A Practical Guide to Mechanistic Interpretability: Demistifying black boxes with **Sparse AutoEncoders**¹²³

J. Setpal

January 29, 2025

ECE ML Reading Group

1/22

¹ https://transformer-circuits.pub/2023/monosemantic-features/

² https://arxiv.org/abs/2404.16014

³https://www.arena.education/

1 Background & Intuition

Sparse AutoEncoders

3 Applications & Practical Detail

臣

Background & Intuition

O Sparse AutoEncoders

3 Applications & Practical Detail

Э

990

<<p>< □ > < 同 > <</p>

4 / 22

This is easy for shallow learning.

This is easy for shallow learning. For deep learning however, it is a **lot** harder.

This is easy for shallow learning. For deep learning however, it is a **lot** harder.

Today, we will interpret deep neural networks (transformers).

Most of interpretability seeks to extract representations from weights:

5/22

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

It seeks to understand functions that *individual neurons* play in the inference of a neural network.

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

It seeks to understand functions that *individual neurons* play in the inference of a neural network.

This can subsequently be used to offer high-level explanations for decisions, as well as guarantees during inference.

ECE ML Reading Group

Mechanistic Interpretability

Background & Intuition

2 Sparse AutoEncoders

3 Applications & Practical Detail

- 一司

臣

Transformers Mini-Review

Crucial Aside: Treat residual connections as "memory"; all other layers "read from", "process", and "write-to" memory!

Transformers Mini-Review

Crucial Aside: Treat residual connections as "memory"; all other layers "read from", "process", and "write-to" memory!

ECE ML Reading Group

Q: Now, given the framework we just discussed, what stops from directly analyzing MLP activations?

Q: Now, given the framework we just discussed, what stops from directly analyzing MLP activations?

A: Enter polysemanticity & superposition.

 $\ensuremath{\mathbf{Q}}\xspace$ Now, given the framework we just discussed, what stops from directly analyzing MLP activations?

A: Enter polysemanticity & superposition.

When we perform an indvidual analysis of neurons, we observe it fires for unrelated concepts.

This is polysemanticity.

 $\ensuremath{\mathbf{Q}}\xspace$ Now, given the framework we just discussed, what stops from directly analyzing MLP activations?

A: Enter polysemanticity & superposition.

When we perform an indvidual analysis of neurons, we observe it fires for unrelated concepts.

This is polysemanticity.

We observe learning compresses larger models to smaller footprints using denser parameters.

This is superposition.

We will explore the following setup:

Э

イロト イボト イヨト イヨト

990

Training Setup

	Transformer	Sparse Autoencoder
Layers	1 Attention Block	1 ReLU
	1 MLP Block	1 Linear
MLP Size	512	$512 imes f \in \{1, \dots, 256\}^4$
Dataset	The Pile (100B tokens)	Activations (8B samples)
Loss	Autoregressive Log-Likelihood	L2 Reconstruction
		L1 on hidden-layer activation

≣ ▶

Э

Training Setup

	Transformer	Sparse Autoencoder
Layers	1 Attention Block	1 ReLU
MLP Size	512	$512 \times f \in \{1, \dots, 256\}^4$
Dataset	The Pile (100B tokens)	Activations (8B samples)
Loss	Autoregressive Log-Likelihood	<i>L</i> 2 Reconstruction <i>L</i> 1 on hidden-layer activation

Objective: polysemantic activations $\stackrel{Tr}{\rightarrow}$ monosemantic features.

	Transformer	Sparse Autoencoder
Layers	1 Attention Block	1 ReLU
	1 MLP Block	1 Linear
MLP Size	512	$512 imes f \in \{1, \dots, 256\}^4$
Dataset	The Pile (100B tokens)	Activations (8B samples)
Loss	Autoregressive Log-Likelihood	L2 Reconstruction
		L1 on hidden-layer activation

Objective: polysemantic activations $\stackrel{Tr}{\rightarrow}$ monosemantic features.

The sparse, overcomplete autoencoder is trained against this objective.

- 1. **Sparse** because we constrain activations (L1 penalty).
- 2. **Overcomplete** because the hidden layer exceeds the input dimension.

 $^{{}^{4}}f = 8$ for our analysis

Given $X := \{x^j\}_{j=1}^K$; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t: $||X - DR||_F^2 \approx 0$ (1)

Э

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(1)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
 (2)

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(3)

where d_i is the 'feature direction' represented as columns of the W_D .

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(1)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
⁽²⁾

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(3)

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

a. Training data $\propto n$ (interpretable features).

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(1)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
⁽²⁾

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(3)

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

- a. Training data \propto *n*(interpretable features).
- b. Tying b_D before the encoder and after the decoder improves performance.

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(1)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
⁽²⁾

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(3)

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

- a. Training data \propto *n*(interpretable features).
- b. Tying b_D before the encoder and after the decoder improves performance.
- c. Dead neurons are periodically *resampled* to improve feature representations.

ECE ML Reading Group

11 / 22

Evaluating Interpretability

Reliable evaluations on interpretability were scored based on a rubric:

Features were found to be interpretable when score > 8.

ECE ML Reading Group

∃ >

12 / 22

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

Э

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

This is effectively *invisible* when viewed through the polysemantic model!

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

This is effectively *invisible* when viewed through the polysemantic model!

 $LL(t) = \log \left(P(t | \text{Arabic}) / P(t) \right)$

We can evaluate each token using the log-likelihood ratio:

Despite representing 0.13% of training data, arabic script makes up 81% of active tokens:

Feature Activation Distribution (A/1/3450)

(4)

They can be used to steer generation.

< ロト < 同ト < ヨト < ヨト

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

< ロト < 同ト < ヨト < ヨト

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

We observe that interpreted features are actively used by the model.

< ロト < 同ト < ヨト < ヨト

Finite State Automaton

A unique feature of features is their role as finite state automaton.

Finite State Automaton

A unique feature of features is their role as finite state automaton.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

A unique feature of features is their role as finite state automaton.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

These present partial explanations of memorizations within transformers:

15 / 22

Quick review of the structure of the original SAE:

$$f(x) := \sigma_{\mathsf{ReLU}}(W_E(x - b_D) + b_E)$$
(5)

$$\hat{x}(f(x)) := W_D f(x) + b_D \tag{6}$$

$$\min_{W_E, W_D, b_D, b_e} \mathcal{L}(x) = \min_{W_E, W_D, b_D, b_e} \underbrace{\|x - \hat{x}(f(x))\|_2^2}_{\text{reconstruction error}} + \underbrace{\lambda \|f(x)\|_1}_{\text{sparsity penalty}}$$
(7)

nge

Quick review of the structure of the original SAE:

$$f(x) := \sigma_{\mathsf{ReLU}}(W_E(x - b_D) + b_E)$$
(5)

$$\hat{x}(f(x)) := W_D f(x) + b_D \tag{6}$$

$$\min_{W_E, W_D, b_D, b_e} \mathcal{L}(x) = \min_{W_E, W_D, b_D, b_e} \underbrace{\|x - \hat{x}(f(x))\|_2^2}_{\text{reconstruction error}} + \underbrace{\lambda \|f(x)\|_1}_{\text{sparsity penalty}}$$
(7)

We evaluate the SAE by how much loss increases when **activations are substituted with the reconstructions** during forward pass.

Quick review of the structure of the original SAE:

$$f(x) := \sigma_{\mathsf{ReLU}}(W_E(x - b_D) + b_E)$$
(5)

$$\hat{x}(f(x)) := W_D f(x) + b_D \tag{6}$$

$$\min_{W_E, W_D, b_D, b_e} \mathcal{L}(x) = \min_{W_E, W_D, b_D, b_e} \underbrace{\|x - \hat{x}(f(x))\|_2^2}_{\text{reconstruction error}} + \underbrace{\lambda \|f(x)\|_1}_{\text{sparsity penalty}}$$
(7)

We evaluate the SAE by how much loss increases when **activations are substituted with the reconstructions** during forward pass.

Observation: $\|\cdot\|_1$ motivates *shrinkage* – minimizing sparsity is "easier" than reconstructing sparse features, and motivates under-activation of reconstructed features.

16 / 22

Modern (Gated) SAEs (2/2)

Idea: Let's disentangle feature importance with feature existance:

17 / 22

Modern (Gated) SAEs (2/2)

Idea: Let's disentangle feature importance with feature existance:

For this, the authors also define the following loss function:

$$\mathcal{L}(x) := \|x - \hat{x}(f(x))\|_2^2 + \underbrace{\lambda \|\sigma_{\mathsf{ReLU}}(f_g(x))\|_1}_{f_g := \text{ pre-activation}} + \|x - \hat{x}(\sigma_{\mathsf{ReLU}}(f_g(x)))\|_2^2$$

Modern (Gated) SAEs (2/2)

Idea: Let's disentangle feature importance with feature existance:

For this, the authors also define the following loss function:

$$\mathcal{L}(x) := \|x - \hat{x}(f(x))\|_2^2 + \underbrace{\lambda \|\sigma_{\mathsf{ReLU}}(f_g(x))\|_1}_{f_g := \text{ pre-activation}} + \|x - \hat{x}(\sigma_{\mathsf{ReLU}}(f_g(x)))\|_2^2$$

Finally, they also use weight-tying to reduce parameter explosion.

ECE ML Reading Group

Background & Intuition

O Sparse AutoEncoders

3 Applications & Practical Detail

臣

990

If you can view this screen, I am making a mistake.

Э

590

If you can view this screen, I am making a mistake.

If you can view this screen, I am making a mistake.

nge

Have an awesome rest of your day!

Slides: https://jinen.setpal.net/slides/sae.pdf

Э

nge