
Responsive CSS
CS 390 – Web Application Development

J. Setpal

September 6, 2023

CS 390 – WAP Responsive CSS September 6, 2023 1 / 22

Callout: Machine Learning @ Purdue

If you can view this screen, I am making a mistake.

CS 390 – WAP Responsive CSS September 6, 2023 2 / 22

Outline

1 Why It’s Worth Your Time

2 Some Static Stuff

3 Animations

4 ETC

CS 390 – WAP Responsive CSS September 6, 2023 3 / 22

Outline

1 Why It’s Worth Your Time

2 Some Static Stuff

3 Animations

4 ETC

CS 390 – WAP Responsive CSS September 6, 2023 4 / 22

WIWYT – Responsive CSS

- Every single website needs to generalize to every device specification.

- Animations and Transitions make websites look very cool.

- We want to write less JavaScript.

CS 390 – WAP Responsive CSS September 6, 2023 5 / 22

WIWYT – Responsive CSS

- Every single website needs to generalize to every device specification.

- Animations and Transitions make websites look very cool.

- We want to write less JavaScript.

CS 390 – WAP Responsive CSS September 6, 2023 5 / 22

WIWYT – Responsive CSS

- Every single website needs to generalize to every device specification.

- Animations and Transitions make websites look very cool.

- We want to write less JavaScript.

CS 390 – WAP Responsive CSS September 6, 2023 5 / 22

Outline

1 Why It’s Worth Your Time

2 Some Static Stuff

3 Animations

4 ETC

CS 390 – WAP Responsive CSS September 6, 2023 6 / 22

Positioning Elements

Complicated webpages have a lot of elements interacting simultaneously.

By manipulating position in CSS, we can update element placement.
Syntax: target { position: relative|absolute|sticky|fixed }

Each of these values have the following behaviors:

- static: Default value; positions elements based on the DOM tree

- relative: Positions elements relative to the parent element

- absolute: Positions elements relative to the HTML document

- sticky: Element scrolls with it’s parent till the parent ends and stays
at the viewport edge after

- fixed: Positions elements relative to the viewport

CS 390 – WAP Responsive CSS September 6, 2023 7 / 22

Positioning Elements

Complicated webpages have a lot of elements interacting simultaneously.
By manipulating position in CSS, we can update element placement.
Syntax: target { position: relative|absolute|sticky|fixed }

Each of these values have the following behaviors:

- static: Default value; positions elements based on the DOM tree

- relative: Positions elements relative to the parent element

- absolute: Positions elements relative to the HTML document

- sticky: Element scrolls with it’s parent till the parent ends and stays
at the viewport edge after

- fixed: Positions elements relative to the viewport

CS 390 – WAP Responsive CSS September 6, 2023 7 / 22

Positioning Elements

Complicated webpages have a lot of elements interacting simultaneously.
By manipulating position in CSS, we can update element placement.
Syntax: target { position: relative|absolute|sticky|fixed }

Each of these values have the following behaviors:

- static: Default value; positions elements based on the DOM tree

- relative: Positions elements relative to the parent element

- absolute: Positions elements relative to the HTML document

- sticky: Element scrolls with it’s parent till the parent ends and stays
at the viewport edge after

- fixed: Positions elements relative to the viewport

CS 390 – WAP Responsive CSS September 6, 2023 7 / 22

Positioning Elements

Complicated webpages have a lot of elements interacting simultaneously.
By manipulating position in CSS, we can update element placement.
Syntax: target { position: relative|absolute|sticky|fixed }

Each of these values have the following behaviors:

- static: Default value; positions elements based on the DOM tree

- relative: Positions elements relative to the parent element

- absolute: Positions elements relative to the HTML document

- sticky: Element scrolls with it’s parent till the parent ends and stays
at the viewport edge after

- fixed: Positions elements relative to the viewport

CS 390 – WAP Responsive CSS September 6, 2023 7 / 22

Positioning Elements

Complicated webpages have a lot of elements interacting simultaneously.
By manipulating position in CSS, we can update element placement.
Syntax: target { position: relative|absolute|sticky|fixed }

Each of these values have the following behaviors:

- static: Default value; positions elements based on the DOM tree

- relative: Positions elements relative to the parent element

- absolute: Positions elements relative to the HTML document

- sticky: Element scrolls with it’s parent till the parent ends and stays
at the viewport edge after

- fixed: Positions elements relative to the viewport

CS 390 – WAP Responsive CSS September 6, 2023 7 / 22

Positioning Elements

Complicated webpages have a lot of elements interacting simultaneously.
By manipulating position in CSS, we can update element placement.
Syntax: target { position: relative|absolute|sticky|fixed }

Each of these values have the following behaviors:

- static: Default value; positions elements based on the DOM tree

- relative: Positions elements relative to the parent element

- absolute: Positions elements relative to the HTML document

- sticky: Element scrolls with it’s parent till the parent ends and stays
at the viewport edge after

- fixed: Positions elements relative to the viewport

CS 390 – WAP Responsive CSS September 6, 2023 7 / 22

Positioning Elements

Complicated webpages have a lot of elements interacting simultaneously.
By manipulating position in CSS, we can update element placement.
Syntax: target { position: relative|absolute|sticky|fixed }

Each of these values have the following behaviors:

- static: Default value; positions elements based on the DOM tree

- relative: Positions elements relative to the parent element

- absolute: Positions elements relative to the HTML document

- sticky: Element scrolls with it’s parent till the parent ends and stays
at the viewport edge after

- fixed: Positions elements relative to the viewport

CS 390 – WAP Responsive CSS September 6, 2023 7 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis
flex-wrap [don’t] move objects to the below line
justify-content Item spacing against the main axis
align-content Item spacing against the cross axis
align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis
flex-wrap [don’t] move objects to the below line
justify-content Item spacing against the main axis
align-content Item spacing against the cross axis
align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis
flex-wrap [don’t] move objects to the below line
justify-content Item spacing against the main axis
align-content Item spacing against the cross axis
align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis

flex-wrap [don’t] move objects to the below line
justify-content Item spacing against the main axis
align-content Item spacing against the cross axis
align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis
flex-wrap [don’t] move objects to the below line

justify-content Item spacing against the main axis
align-content Item spacing against the cross axis
align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis
flex-wrap [don’t] move objects to the below line
justify-content Item spacing against the main axis

align-content Item spacing against the cross axis
align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis
flex-wrap [don’t] move objects to the below line
justify-content Item spacing against the main axis
align-content Item spacing against the cross axis

align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Alignment – Flexbox

Flexbox is a one dimensional layout method1 for content alignment within
a parent container.

It is triggered by setting display: flex in the parent container. It aligns
elements on the basis of two axes:

- Main Axis: Along the axis of alignment.

- Cross Axis: Orthogonal to the axis of alignment.

Parent Attributes:

Key Use-case

flex-direction row / column main axis
flex-wrap [don’t] move objects to the below line
justify-content Item spacing against the main axis
align-content Item spacing against the cross axis
align-items Orientation within child elements

1MDN
CS 390 – WAP Responsive CSS September 6, 2023 8 / 22

Flexbox – Child Elements

Child Elements:

Key Use-case

flex-shrink Ratio for space reduction

flex-grow Ratio for space extension
flex-basis Initial item size
align-self Override child orientation

CS 390 – WAP Responsive CSS September 6, 2023 9 / 22

Flexbox – Child Elements

Child Elements:

Key Use-case

flex-shrink Ratio for space reduction
flex-grow Ratio for space extension

flex-basis Initial item size
align-self Override child orientation

CS 390 – WAP Responsive CSS September 6, 2023 9 / 22

Flexbox – Child Elements

Child Elements:

Key Use-case

flex-shrink Ratio for space reduction
flex-grow Ratio for space extension
flex-basis Initial item size

align-self Override child orientation

CS 390 – WAP Responsive CSS September 6, 2023 9 / 22

Flexbox – Child Elements

Child Elements:

Key Use-case

flex-shrink Ratio for space reduction
flex-grow Ratio for space extension
flex-basis Initial item size
align-self Override child orientation

CS 390 – WAP Responsive CSS September 6, 2023 9 / 22

Compounding Rules

On Monday (August 28, 2023), we spoke about D.R.Y: Don’t Repeat
Yourself.

Having multiple CSS targets with the same rule can introduce
such a situation.

One way to avoid this is to use compounded rules.
Syntax: target1, target2 { k: v; }

You can also compound rules to subset targets. This targets descendants
of specific elements.
Syntax: target1target2 { k: v; }
English: Apply to all target2’s that are descendants2 of target1’s.

2w.r.t DOM
CS 390 – WAP Responsive CSS September 6, 2023 10 / 22

Compounding Rules

On Monday (August 28, 2023), we spoke about D.R.Y: Don’t Repeat
Yourself. Having multiple CSS targets with the same rule can introduce
such a situation.

One way to avoid this is to use compounded rules.
Syntax: target1, target2 { k: v; }

You can also compound rules to subset targets. This targets descendants
of specific elements.
Syntax: target1target2 { k: v; }
English: Apply to all target2’s that are descendants2 of target1’s.

2w.r.t DOM
CS 390 – WAP Responsive CSS September 6, 2023 10 / 22

Compounding Rules

On Monday (August 28, 2023), we spoke about D.R.Y: Don’t Repeat
Yourself. Having multiple CSS targets with the same rule can introduce
such a situation.

One way to avoid this is to use compounded rules.

Syntax: target1, target2 { k: v; }

You can also compound rules to subset targets. This targets descendants
of specific elements.
Syntax: target1target2 { k: v; }
English: Apply to all target2’s that are descendants2 of target1’s.

2w.r.t DOM
CS 390 – WAP Responsive CSS September 6, 2023 10 / 22

Compounding Rules

On Monday (August 28, 2023), we spoke about D.R.Y: Don’t Repeat
Yourself. Having multiple CSS targets with the same rule can introduce
such a situation.

One way to avoid this is to use compounded rules.
Syntax: target1, target2 { k: v; }

You can also compound rules to subset targets. This targets descendants
of specific elements.
Syntax: target1target2 { k: v; }
English: Apply to all target2’s that are descendants2 of target1’s.

2w.r.t DOM
CS 390 – WAP Responsive CSS September 6, 2023 10 / 22

Compounding Rules

On Monday (August 28, 2023), we spoke about D.R.Y: Don’t Repeat
Yourself. Having multiple CSS targets with the same rule can introduce
such a situation.

One way to avoid this is to use compounded rules.
Syntax: target1, target2 { k: v; }

You can also compound rules to subset targets. This targets descendants
of specific elements.

Syntax: target1target2 { k: v; }
English: Apply to all target2’s that are descendants2 of target1’s.

2w.r.t DOM
CS 390 – WAP Responsive CSS September 6, 2023 10 / 22

Compounding Rules

On Monday (August 28, 2023), we spoke about D.R.Y: Don’t Repeat
Yourself. Having multiple CSS targets with the same rule can introduce
such a situation.

One way to avoid this is to use compounded rules.
Syntax: target1, target2 { k: v; }

You can also compound rules to subset targets. This targets descendants
of specific elements.
Syntax: target1target2 { k: v; }
English: Apply to all target2’s that are descendants2 of target1’s.

2w.r.t DOM
CS 390 – WAP Responsive CSS September 6, 2023 10 / 22

Compounded Specificity

Q0: Recap: What is specificity?

Q1: How would you resolve specificity for rules:

A. ul#primary-nav li.active, and

B. nav a:hover::before?

A1: Create a new system (power ∝ specificity):

1. IDs have power 102.

2. Classes, attributes, pseudo-classes have power 101.

3. Elements, pseudo-elements have power 100.

Then add the scores; the higher score retains precedence.

Fantastic reference: https://specificity.keegan.st/

CS 390 – WAP Responsive CSS September 6, 2023 11 / 22

https://specificity.keegan.st/

Compounded Specificity

Q0: Recap: What is specificity?
Q1: How would you resolve specificity for rules:

A. ul#primary-nav li.active, and

B. nav a:hover::before?

A1: Create a new system (power ∝ specificity):

1. IDs have power 102.

2. Classes, attributes, pseudo-classes have power 101.

3. Elements, pseudo-elements have power 100.

Then add the scores; the higher score retains precedence.

Fantastic reference: https://specificity.keegan.st/

CS 390 – WAP Responsive CSS September 6, 2023 11 / 22

https://specificity.keegan.st/

Compounded Specificity

Q0: Recap: What is specificity?
Q1: How would you resolve specificity for rules:

A. ul#primary-nav li.active, and

B. nav a:hover::before?

A1: Create a new system (power ∝ specificity):

1. IDs have power 102.

2. Classes, attributes, pseudo-classes have power 101.

3. Elements, pseudo-elements have power 100.

Then add the scores; the higher score retains precedence.

Fantastic reference: https://specificity.keegan.st/

CS 390 – WAP Responsive CSS September 6, 2023 11 / 22

https://specificity.keegan.st/

Compounded Specificity

Q0: Recap: What is specificity?
Q1: How would you resolve specificity for rules:

A. ul#primary-nav li.active, and

B. nav a:hover::before?

A1: Create a new system (power ∝ specificity):

1. IDs have power 102.

2. Classes, attributes, pseudo-classes have power 101.

3. Elements, pseudo-elements have power 100.

Then add the scores; the higher score retains precedence.

Fantastic reference: https://specificity.keegan.st/

CS 390 – WAP Responsive CSS September 6, 2023 11 / 22

https://specificity.keegan.st/

Compounded Specificity

Q0: Recap: What is specificity?
Q1: How would you resolve specificity for rules:

A. ul#primary-nav li.active, and

B. nav a:hover::before?

A1: Create a new system (power ∝ specificity):

1. IDs have power 102.

2. Classes, attributes, pseudo-classes have power 101.

3. Elements, pseudo-elements have power 100.

Then add the scores; the higher score retains precedence.

Fantastic reference: https://specificity.keegan.st/

CS 390 – WAP Responsive CSS September 6, 2023 11 / 22

https://specificity.keegan.st/

Compounded Specificity

Q0: Recap: What is specificity?
Q1: How would you resolve specificity for rules:

A. ul#primary-nav li.active, and

B. nav a:hover::before?

A1: Create a new system (power ∝ specificity):

1. IDs have power 102.

2. Classes, attributes, pseudo-classes have power 101.

3. Elements, pseudo-elements have power 100.

Then add the scores; the higher score retains precedence.

Fantastic reference: https://specificity.keegan.st/

CS 390 – WAP Responsive CSS September 6, 2023 11 / 22

https://specificity.keegan.st/

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position
img Load an image
rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values
min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties

translate<X> Compute an updated relative position
img Load an image
rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values
min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position

img Load an image
rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values
min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position
img Load an image

rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values
min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position
img Load an image
rotate<X> Compute an updated relative rotation

max Compute the maximum of a series of values
min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position
img Load an image
rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values

min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position
img Load an image
rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values
min Compute the minimum of a series of values

clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position
img Load an image
rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values
min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set

calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

CSS Functions

Certain values for CSS elements cannot be precomputed. To enable this
use-case, CSS includes a set of predefined value functions.
Syntax: func(*args)

Key Use-case

var Get custom properties
translate<X> Compute an updated relative position
img Load an image
rotate<X> Compute an updated relative rotation
max Compute the maximum of a series of values
min Compute the minimum of a series of values
clamp Setup a minimum, ideal and maximum value set
calc Perform arithmetic operations

CS 390 – WAP Responsive CSS September 6, 2023 12 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding
@supports Nested Apply if property is supported
@media Nested Apply viewport specific rules
@keyframes Nested Keyframes
@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding
@supports Nested Apply if property is supported
@media Nested Apply viewport specific rules
@keyframes Nested Keyframes
@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding
@supports Nested Apply if property is supported
@media Nested Apply viewport specific rules
@keyframes Nested Keyframes
@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding

@supports Nested Apply if property is supported
@media Nested Apply viewport specific rules
@keyframes Nested Keyframes
@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding
@supports Nested Apply if property is supported

@media Nested Apply viewport specific rules
@keyframes Nested Keyframes
@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding
@supports Nested Apply if property is supported
@media Nested Apply viewport specific rules

@keyframes Nested Keyframes
@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding
@supports Nested Apply if property is supported
@media Nested Apply viewport specific rules
@keyframes Nested Keyframes

@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

@ Rules

At-Rules are descriptive / conditionally applied properties, that inform
custom behaviours of the webpage.

@ rules are defined in two ways:

- Regular Syntax: @identifier (RULE);

- Nested Syntax: @identifier (RULE) { k:v };

Key Type Use-case

@charset Regular Define character encoding
@supports Nested Apply if property is supported
@media Nested Apply viewport specific rules
@keyframes Nested Keyframes
@import Regular Use remote CSS styles

CS 390 – WAP Responsive CSS September 6, 2023 13 / 22

Variables in CSS

CSS also allows us to define custom properties, or variables.
Syntax: --property-name: value;

These are accessible only within their defined attribute by default.
Common best practice is to make it accessible globally:
:root { --property-name: value; } using the root psuedo-class.

CS 390 – WAP Responsive CSS September 6, 2023 14 / 22

Variables in CSS

CSS also allows us to define custom properties, or variables.
Syntax: --property-name: value;

These are accessible only within their defined attribute by default.
Common best practice is to make it accessible globally:
:root { --property-name: value; } using the root psuedo-class.

CS 390 – WAP Responsive CSS September 6, 2023 14 / 22

Variables in CSS (Contd.)

These values can then be accessed using the var(--property-name)
function. Example:

style.css

:root {

--background -color: blue;

}

h1 {

background -color: var(--background -color);

}

h2 {

background -color: var(--background -color);

}

CS 390 – WAP Responsive CSS September 6, 2023 15 / 22

Outline

1 Why It’s Worth Your Time

2 Some Static Stuff

3 Animations

4 ETC

CS 390 – WAP Responsive CSS September 6, 2023 16 / 22

Transition / Animation Dichotomy

Q: Any obvious difference between transitions and animations (semantic
interpretation)?

A: That’s pretty much it! (did the gambit work?)

More formally, transitions handle smooth state changes of updating
properties.

Animations allow more fine-grained control using keyframes to define the
state of the update, and do not need to be triggered by updates within
properties.

CS 390 – WAP Responsive CSS September 6, 2023 17 / 22

Transition / Animation Dichotomy

Q: Any obvious difference between transitions and animations (semantic
interpretation)?
A: That’s pretty much it! (did the gambit work?)

More formally, transitions handle smooth state changes of updating
properties.

Animations allow more fine-grained control using keyframes to define the
state of the update, and do not need to be triggered by updates within
properties.

CS 390 – WAP Responsive CSS September 6, 2023 17 / 22

Transition / Animation Dichotomy

Q: Any obvious difference between transitions and animations (semantic
interpretation)?
A: That’s pretty much it! (did the gambit work?)

More formally, transitions handle smooth state changes of updating
properties.

Animations allow more fine-grained control using keyframes to define the
state of the update, and do not need to be triggered by updates within
properties.

CS 390 – WAP Responsive CSS September 6, 2023 17 / 22

Transition / Animation Dichotomy

Q: Any obvious difference between transitions and animations (semantic
interpretation)?
A: That’s pretty much it! (did the gambit work?)

More formally, transitions handle smooth state changes of updating
properties.

Animations allow more fine-grained control using keyframes to define the
state of the update, and do not need to be triggered by updates within
properties.

CS 390 – WAP Responsive CSS September 6, 2023 17 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation. Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation. Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation. Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation. Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation. Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation. Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation.

Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Transitions

Transitions are generally used when state changes are performed
interactively – i.e. through the GUI.

Syntax: The following primary properties define transitions:

1. transition-property: all|<property-name>

2. transition-duration: n unit

3. transition-timing-function:
ease|ease-in|ease-in-out|linear

4. transition-delay: n unit

Shorthand: Use transition with the arguments in the above order.

Multiple transitions can be defined by using comma-separation. Unlike
fonts, these are applied in parallel; not as fallback.

CS 390 – WAP Responsive CSS September 6, 2023 18 / 22

Animations

Animations allow us fine-grained access of the scene, using keyframes for
controlling the manipulation.
Syntax:

style.css

@keyframes <name >

{

from |0% {

k: v;

}

to |100% {

k: v;

}

}

CS 390 – WAP Responsive CSS September 6, 2023 19 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Animations (Contd.)

Within the target we specify the following:

1. animation-name: <name>;

2. animation-duration: n unit;

3. animation-delay: n unit;

4. animation-iteration-count: infinite;

5. animation-timing-function: ease[-in][-out]|linear;

6. animation-direction: reverse;

7. animation-fill-mode: none;

Shorthand: Use animation with the arguments in the above order.

CS 390 – WAP Responsive CSS September 6, 2023 20 / 22

Outline

1 Why It’s Worth Your Time

2 Some Static Stuff

3 Animations

4 ETC

CS 390 – WAP Responsive CSS September 6, 2023 21 / 22

Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/r-css.pdf

If anything’s incorrect or unclear, please ping jsetpal@purdue.edu

I’ll patch it ASAP.

CS 390 – WAP Responsive CSS September 6, 2023 22 / 22

https://cs.purdue.edu/homes/jsetpal/slides/r-css.pdf
mailto:jsetpal@purdue.edu

	Why It's Worth Your Time
	Some Static Stuff
	Animations
	ETC

