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Why Should We Care? (1/3)

Monge likes playing with sandcastles.

He wonders, “What is the most efficient way to move this marvellous
sandcastle from the beach to my house?”

And Optimal Transport was born.

Why should you care:

1. You like playing with sandcastles.
2. You’re interested in any of the following research foci:

a. Neural Style Transfer:

Machine Learning @ Purdue Optimal Transport April 10, 2025 4 / 30



Why Should We Care? (1/3)

Monge likes playing with sandcastles.

He wonders, “What is the most efficient way to move this marvellous
sandcastle from the beach to my house?”

And Optimal Transport was born.

Why should you care:

1. You like playing with sandcastles.

2. You’re interested in any of the following research foci:
a. Neural Style Transfer:

Machine Learning @ Purdue Optimal Transport April 10, 2025 4 / 30



Why Should We Care? (1/3)

Monge likes playing with sandcastles.

He wonders, “What is the most efficient way to move this marvellous
sandcastle from the beach to my house?”

And Optimal Transport was born.

Why should you care:

1. You like playing with sandcastles.
2. You’re interested in any of the following research foci:

a. Neural Style Transfer:

Machine Learning @ Purdue Optimal Transport April 10, 2025 4 / 30



Why Should We Care? (2/3)

2. b. Sentence Similarity (Word Mover’s Distance):

c. Graph Neural Networks (Better Representation Learning):
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Why Should We Care? (3/3)

2. d. Medical Imaging (Gray Matter Tissue loss for Dementia):

e. Robust Point-Cloud Matching:
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Geometry Induced by OT on the Probability Simplex

We start with the probability simplex:

Σn :=

{
a ∈ Rn

+ :
n∑

i=1

ai = 1

}
(1)

Over which we define a discrete probability measure:

α(x) =
n∑

i=1

aiχxi (x), s.t. a ∈ Σn (2)

Aside

OT literature deals with both discrete and continuous measures using the
same framework. We’ll focus mostly on the discrete setting.
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Monge’s Assignment Problem (1/2)

Monge asks us to transfer measure α to a new measure β while also
minimizing the total cost of transportation.

α(x) =
n∑

i=1

aiχxi (x), β(y) =
m∑
i=1

biχyi (y) (3)

To quantify cost we have matrix C ∈ Rn×m which determines the cost of
moving mass xi → yj ∀i , j ∈ {1, . . . , n}, {1, . . . ,m}.

We define a map T : X → Y that tells us what to move where. This is our
Transport Plan. Now, we can formally define the assignment objective:

min
T

1

n

n∑
i=1

Ci ,T (i) (4)

If n = m, T ∈ Perm(n).
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Monge’s Assignment Problem (2/2)

Two visual examples of optimal transport:

x1

x2

y1 y2

x1

x2

y1

y2

x4

x5
x6

x3
y3

x7

Observations:

1. The optimal transport map is not necessarily unique.

2. The current formulation does not allow mass-splitting.

3. If m > n there is no feasible transport plan.

4. Complexity scales sharply and optimization landscape is non-convex.
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Push-Forward & Pull-Back Operators

For every valid transport map, we know that the following is satisfied:

∀j ∈ {1, . . . ,m}, bj =
∑

i :T (i)=yj

ai (5)

We define the Push-Forward operator T♯ to map a transport plan over
an entire measure space.

T♯ :M(X )→M(Y ), β = T♯α :=
n∑
i

aiχT (xi ) (6)

The Push-Forward operator is different’ from a composition on T . That is
the Pull-Back operator:

T ♯ : C(Y)→ C(X ), T ♯g := g ◦ T (7)

Push-Forward and Pull-Back operators are related as follows:

∀(α, g) ∈M(X )× C(Y),
∫
Y
gd(T♯α) =

∫
X
T ♯gdα (8)
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Kantorovich Relaxation (1/2)

Kantorovich saw slide 10 of this presentation in the 1940’s and decided to
take matters in his own hands.

Key Idea: Relax determinism constraint → get probabilistic transport.

Basically, we allow mass splitting. Instead of a transport map, we define a

family of coupling matrices where each P ∈ Rn×m
+ is a valid coupling:

U(a,b) :=

P ∈ Rn×m
+ : P1m = a,PT

1n = b︸ ︷︷ ︸
mass conservation

 (9)

Finally, our new optimization objective is as follows:

LC (a, b) := min
P∈U(a,b)

⟨C ,P⟩F =
∑
i ,j

Ci ,jPi ,j (10)

BIG Observation: This is a linear program.
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Kantorovich Relaxation (2/2)

↵

�

↵

�

Observations:

1. If we restrict P to the permutation matrix and have each weight be
uniform, we recover Monge maps. This restriction further implies:

LC (1n/n, 1n/n) ≤ min
T∈Perm(n)

⟨C ,PT ⟩ (11)

So, the Kantorovich Relaxation is tight.

2. Each coupling P is symmetric: P ∈ U(a,b) ⇐⇒ PT ∈ U(a,b).
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Implications of Linear Programs

The headline news from the Kantorovich Relaxation is that our
optimization objective is now a linear program.

So what are the implications of this?

1. Can be solved in O(n2.5 log n).
2. The OT problem is now convex.

3. The OT problem has a dual, which is a linear program whose optimal
value upper bounds the optimal value of the primal.

4. The optimal value for the primal problem equals the dual ⇐⇒ the
program has an optimal solution – by Strong Duality Theorem.

5. If we know an optimal solution exists, we can choose to solve the
easier problem and get the same answer.
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program has an optimal solution – by Strong Duality Theorem.

5. If we know an optimal solution exists, we can choose to solve the
easier problem and get the same answer.
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Kantorovich Dual

The Kantorovich problem is a constrained convex minimization problem,
while the dual is a constrained concave maximization problem.

Like the primal, we still must define a feasible set:

R(C ) := {(f , g) ∈ Rn × Rm : f ⊕ g ≤ C} (12)

From there, we have the following dual problem:

LC (a,b) = max
f ,g∈R(C)

⟨f , a⟩+ ⟨g ,b⟩ (13)

The dual variables, here f , g are called Kantorovich Potentials.
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Intuitive Example of the Dual in Practice

Consider a hypothetical where an operator wants to transfer goods from
warehouses to factories.

One way to optimize costs would be to plan a route, by solving LC (a,b).

If the optimal plan is too expensive to compute, what can be done?

One solution could be to outsource. A vendor may present dual variables:

f =
[
unit cost of pickup from warehouse i

]T
(14)

g =
[
unit cost to deliver to factory j

]T
(15)

To check the optimality of the vendor’s prices, the operator can use Ci ,j :

∀(i , j), fi + gj

?
≤ Ci ,j (16)
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p-Wasserstein Distance (1/2)

If we fix C , we can compare measures / histograms by the cost of
transporting a measure / histogram to the other.

We will consider p-norms for our cost computation: Ci ,j = ∥xi − yj∥p

Crucially, the optimal transport cost satisfies properties of a distance.

Let n = m, p ≥ 1,C = Dp ∈ Rn×n. We can verify:

1. D ∈ Rn×n
+ is symmetric.

2. Di ,j = 0 ⇐⇒ i = j

3. ∀(i , j , k) ∈ {1, . . . , n}, Di ,k ≤ Di ,j + Dj ,k

Using this, we define the Wasserstein Distance:

Wp(a,b) := LDp(a,b)1/p (17)
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p-Wasserstein Distance (2/2)

No visual this time, but we still have observations:

1. Wp is expensive to compute; there is no closed-form solution.

2. Wp ‘lifts’ Lp distance from points to measures / histograms.

3. (Not obvious) Over Euclidean space, we can factor out translations.

Let Tτ : x 7→ x − τ be the translation operator, mγ :=
∫
X x dγ be

the mean of measure γ. Now, we then have:

W2(Tτ ♯α,Tτ ′ ♯β)
2 = W2(α̃, β̃)

2 + ∥mα −mβ∥2 (18)

Where (α̃, β̃) are zero-centered versions of measures (α, β).

This distinction implies a two-fold comparison: the shapes of
measures α and β, and the distance between their means.
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Sliced Wasserstein Distance (1/4)

One special case of Optimal Transport is the 1-D case; X = R. Assuming
uniform weights4 and c(x , y) = ∥x − y∥pp, we have:

α =
1

n

n∑
i=1

χxi , β =
1

n

n∑
i=1

χyi (19)

W.L.O.G we can assume an ordering on each of the points:

x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn (20)

Crucially, we can observe an optimal transport plan T (xi ) = yi . We now
have closed form transport cost:

Wp(α, β)
p =

(
1

n

n∑
i=1

|xi − yi |p
)1/p

(21)

This reduces OT to a sorting problem, and can be solved in O(n log n).

4generic case is more involved, intuition still holds.
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Sliced Wasserstein Distance (2/4)

Visual for uniform and generic cases:

�
�↵

This is nice, but somewhat limited. Can we extend this notion to Rn?

Idea; let’s slice and dice:

1. Project n features onto d random directions. We now have to solve d
1-D OT problems.

2. Sort d lists to obtain d optimal transport plans.

3. Compute the average cost of transportation.

Caveat: This is is no longer the p-Wasserstein Distance.
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Sliced Wasserstein Distance (3/4)

Here’s what that looks visually, for a single direction:

pV p̃V ∥sort(pV )− sort(p̃V )∥2

Crucially, Sliced Wasserstein Distance is differentiable, which enables us
to use optimize transport cost using neural nets. E.g. texture matching:

input generated input generated
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Sliced Wasserstein Distance (4/4)

Spatial Priors: Projections act on point clouds, which rids spatial
information in learning the input distribution.

A trick to recover spatial structure is to cluster-sort by spatial dimension:

nD input

features distribution

optimized nD

features distribution

nD input + 1D tag

features + tag distribution

optimized (n+1)D

features + tag distribution
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Wasserstein GAN Setup

GANs have the following setup:
Discriminator fξ : RC×D1×D2 → [0, 1]
Generator Gθ : RZ → RC×D1×D2

The difference between generated and target
distribution is minimized using divergences.

Q: Are gradients always informative?
A: No; consider parallel lines infinitesimally
close to one another. KL =∞, JS = log 2

Instead, what if we use distance?

New Discriminator fξ : RC×D1×D2 → R
which models Wasserstein Distance.
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which models Wasserstein Distance.
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Training WGANs

Algorithm 1 WGAN training algorithm. η = 10−5, c = 0.01, ncritic =
5, niter = 500.

1: for t = 0, ..., niter do
2: for t = 0, ..., ncritic do
3: Sample {xi}Bi=1 ∼ DB a batch from the real data.
4: Sample {zi}Bi=1 ∼ PB a batch of prior samples.

5: gξ ← ∇ξ

[
1
B

∑B
i=1 fξ(xi )−

1
B

∑B
i=1 fξ(Gθ(zi ))

]
6: ξ ← ξ + η · RMSProp(gξ)
7: ξ ← clip(ξ, [−c,+c])
8: end for
9: Sample {zi}Bi=1 ∼ P(z) a batch of prior samples.

10: gθ ← −∇θ
1
B

∑B
i=1 fξ(Gθ(zi ))

11: θ ← θ − η · RMSProp(gθ)
12: end for
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Critic Improvements from Wasserstein GANs

Machine Learning @ Purdue Optimal Transport April 10, 2025 28 / 30



Code Example – Training WGANs

If you can view this screen, I am making a mistake.
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Thank you!

Have an awesome rest of your day!

Slides: https://jinen.setpal.net/slides/ot.pdf
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