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ERM Synopsis

We'll start with an overview of supervised learning paradigm:
1. Dataset D := {(x;,y)}Y;; 1 < N < o0; D ~ “Real World"
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ERM Synopsis

We'll start with an overview of supervised learning paradigm:
1. Dataset D := {(x;,y)}Y;; 1 < N < o0; D ~ “Real World"
2. Parameterized model fg : X — Y
3. Objective: Train O s.t. fg(x) =y =~y
How do we mathematically encode y ~ y? A loss (distance) function!
4. Loss function L: Y x Y — R; L(9,y) = 0iff y = y; L is continuous.
How can we update our weights to optimize against this loss function?
5. Gradient Descent! 6 =0 — « - %
Iterate (5) until convergence.

L is minimized over D, not over the real world. This is empirical risk:

1 N
mOin NZL(fo(Xi),y,') (1)
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Agnostic Boosting

Probably Approximately Correct (PAC) Learning is a generalization of
ERM.
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Agnostic Boosting

Probably Approximately Correct (PAC) Learning is a generalization of
ERM.

We define a PAC-learnable concept C if a learner L can with Pr=1—¢
output hypothesis h € H s.t. errorp(h) < e with required samples
ID| € f(e,0,n) = L + 35 + [H|.

One interpretation of PAC allows an arbitrary concept function, that learns
by comparing error in the learner’s hypothesis against the best predictor in
a pre-specified comparison class of predictors. This is Agnostic Learning.

Boosting a weak agnostic learner is a critical aspect of the Omnipredictors
approach to learning “multicalibrated partitions” (we'll get to this soon).
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functions, despite sharing minima for 8 s.t. y =~ y.

Let's evaluate this empirically on ¢1 and /» losses, which optimize for
median and mean respectively:

0 €<0.4

~ fle ~U[0,1]) =
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Challenge Statement

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a different?> optima for two such
functions, despite sharing minima for 8 s.t. y =~ y.

Let's evaluate this empirically on ¢1 and /» losses, which optimize for
median and mean respectively:

L=y =79, ta=(y—y)? (2)

0 €<0.4
~ fle ~U[0,1]) = = 3
X~ e (0.1 {Z/I[O.S, 1] otherwise 3

Omnipredictors provides a framework for rigorous guarantees, deriving
p =~ p*: a predictor that is able to simultaneously minimize a family of
convex loss functions.

2usually, local
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Accuracy in Expectation & Calibration

We subject the model’s predicted probabilities to ‘sanity checks' — these
are classic interpretability notions:

a. p is accurate in expectation if:

E[A(x)] = E[y] (4)
b. p is calibrated if:
Elylp(x)] = B(x) (5)
These may be orthogonal to model performance.

“If you posit a more complex view of the world, | will subject you to a
more rigorous test.” — P. Gopalan.
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Multigroup Fairness

We can split D into various subgroups based on shared characteristics.
These can be explicit or implicit (i.e. subgroups we don’t know of):

Group-1 Group-2 Group-3 Group-4

Accuracy 0.9593 0.6249 0.3157 0.2664
Loss 0.0021 0.4102 1.3457 1.7664
Proportion 0.9 0.08 0.0075 0.0025
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We can split D into various subgroups based on shared characteristics.
These can be explicit or implicit (i.e. subgroups we don’t know of):

Group-1 Group-2 Group-3 Group-4

Accuracy 0.9593 0.6249 0.3157 0.2664
Loss 0.0021 0.4102 1.3457 1.7664
Proportion 0.9 0.08 0.0075 0.0025

Empirical Risk is only 0.0492, but inference is unreliable for subgroups 2-4.

One notion of fairness stipulates equal risk for every subgroup. However,
finding subgroups is hard for high-dimensional data.
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Multiaccuracy & Multicalibration

Can we elicit more information from our model while retaining calibration?
Here, we introduce multiaccuracy and multicalibration.

Let C ={c: X — [-1,1]} be a collection of
subsets, generalized as real-valued functions.

pis (C, a)-multiaccurate if:

max [E[c(x)(y = B(x))]| < a (6)

pis (C, a)-multicalibrated if:

max E[[E[c(x)(y = A(x))]]] < a (7)

If we can find correlations with the error, there’s
some advantage to be gained. We enforce
multicalibration to train the weak agnostic learner.
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Omnipredictors

If we know p*, it is easy for us take take the optimal action.

For y € {0,1}, y ~ Bernoulli(p*). We denote optimal action t := k o p*
as post-processing function.

This paper connects multigroup fairness with the notion of a weak
agnostic learner, to formulate (L, C)-omnipredictors.

Intuitively: the idea is to extract the predictive power of the data.

Let L., be a set of Lipschitz, convex, bounded losses. If g is
C-multicalibrated with some error «, it is an (L¢yx, C, «)-omnipredictor.

Multicalibration implies omniprediction for all convex loss functions.
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Proof of Optimality

As proof for optimality, we evaluate binary classification. Assumptions:
1. p* is boolean.
2. Perfect Mutlicalibration:
Ele(x)(y* — v)|p(x) = v] =0,Vv € [0,1],c € C
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Proof of Optimality

As proof for optimality, we evaluate binary classification. Assumptions:
1. p* is boolean.
2. Perfect Mutlicalibration:
Ele(x)(y* — v)|p(x) = v] =0,Vv € [0,1],c € C

y'[p(z) = 0.7

Vv
Vv
Vv

clp(z) = 0.7 Jensen's Inequality Multicalibration yx ~ Ber(0.7)
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Training Agnostic Learners

We can train an agnostic learner using the following setup:

H:X - {0,1} (8)

D: X x{0,1} (9)

E(h € H) = Pr(x,y)N'D[h(X) 7é y] = E(x,y)ND[gl(yﬁ h(X))] (10)
OPT(H) = Irgiyr_'n{ﬂ(h) (11)
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Training Agnostic Learners

We can train an agnostic learner using the following setup:

H:X —{0,1} (8)
D: X x{0,1} (9)
E(h € H) = Pr(x,y)N'D[h(X) 7é y] = E(x,y)ND[gl(ya h(X))] (10)
=mi 11
OPT(H) Irgyr_'n{ﬁ(h) (11)
An agnostic learner for H produces f s.t. {(f) < OPT(H) +e.
We (e, W)-approximate H by C if Vh € H,e > 0, g € Linc(W):
E(x.y)~pllgw(x) = h(x) < € (12)

If partition S is 5i7,-approximately multicalibrated for C, D,
E(hi) < OPT(H) + € and can identify multicalibrated partitions.
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Have an awesome rest of your day!

Slides:
https://cs.purdue.edu/homes/jsetpal/slides/omnipredictors.pdf
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