
Neural Tangent Kernel
Comprehending Convergence & Generalization in Neural Networks1

J. Setpal

March 6, 2025

MACHINE LEARNING
@ PURDUE

1Jacot, Gabriel, Hongler. [NIPS 2018]
Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 1 / 17

https://arxiv.org/abs/1806.07572


Outline

1 Background & Intuition

2 Neural Tangent Kernel

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 2 / 17



Outline

1 Background & Intuition

2 Neural Tangent Kernel

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 3 / 17



Problem Setting

Given network fθ : Rd → R, we have two distinctive regimes:
Underparameterized Learning: n ≥ p, θ ∈ Rp, D = {(xi , yi )}ni=1

Overparameterized Learning: p ≥ n, θ ∈ Rp, D = {(xi , yi )}ni=1

Either way, we optimize θ to minimize an empirical loss (here, quadratic):

L(θ,D) =
1

n

n∑
i=1

ℓ(fθ(xi ), yi ) =
1

n
∥fθ(x)− y∥22 (1)

Q: Why does overparameterized learning generalize?
A: NTK’s approach:

a. Construct an analogy to a simpler paradigm (kernel methods).

b. Prove the analogy actually holds for sufficiently wide networks.

c. Use the analysis from the kernel method to understand training
dynamics of the neural network.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 4 / 17



Problem Setting

Given network fθ : Rd → R, we have two distinctive regimes:
Underparameterized Learning: n ≥ p, θ ∈ Rp, D = {(xi , yi )}ni=1

Overparameterized Learning: p ≥ n, θ ∈ Rp, D = {(xi , yi )}ni=1

Either way, we optimize θ to minimize an empirical loss (here, quadratic):

L(θ,D) =
1

n

n∑
i=1

ℓ(fθ(xi ), yi ) =
1

n
∥fθ(x)− y∥22 (1)

Q: Why does overparameterized learning generalize?
A: NTK’s approach:

a. Construct an analogy to a simpler paradigm (kernel methods).

b. Prove the analogy actually holds for sufficiently wide networks.

c. Use the analysis from the kernel method to understand training
dynamics of the neural network.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 4 / 17



Problem Setting

Given network fθ : Rd → R, we have two distinctive regimes:
Underparameterized Learning: n ≥ p, θ ∈ Rp, D = {(xi , yi )}ni=1

Overparameterized Learning: p ≥ n, θ ∈ Rp, D = {(xi , yi )}ni=1

Either way, we optimize θ to minimize an empirical loss (here, quadratic):

L(θ,D) =
1

n

n∑
i=1

ℓ(fθ(xi ), yi ) =
1

n
∥fθ(x)− y∥22 (1)

Q: Why does overparameterized learning generalize?

A: NTK’s approach:

a. Construct an analogy to a simpler paradigm (kernel methods).

b. Prove the analogy actually holds for sufficiently wide networks.

c. Use the analysis from the kernel method to understand training
dynamics of the neural network.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 4 / 17



Problem Setting

Given network fθ : Rd → R, we have two distinctive regimes:
Underparameterized Learning: n ≥ p, θ ∈ Rp, D = {(xi , yi )}ni=1

Overparameterized Learning: p ≥ n, θ ∈ Rp, D = {(xi , yi )}ni=1

Either way, we optimize θ to minimize an empirical loss (here, quadratic):

L(θ,D) =
1

n

n∑
i=1

ℓ(fθ(xi ), yi ) =
1

n
∥fθ(x)− y∥22 (1)

Q: Why does overparameterized learning generalize?
A: NTK’s approach:

a. Construct an analogy to a simpler paradigm (kernel methods).

b. Prove the analogy actually holds for sufficiently wide networks.

c. Use the analysis from the kernel method to understand training
dynamics of the neural network.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 4 / 17



Problem Setting

Given network fθ : Rd → R, we have two distinctive regimes:
Underparameterized Learning: n ≥ p, θ ∈ Rp, D = {(xi , yi )}ni=1

Overparameterized Learning: p ≥ n, θ ∈ Rp, D = {(xi , yi )}ni=1

Either way, we optimize θ to minimize an empirical loss (here, quadratic):

L(θ,D) =
1

n

n∑
i=1

ℓ(fθ(xi ), yi ) =
1

n
∥fθ(x)− y∥22 (1)

Q: Why does overparameterized learning generalize?
A: NTK’s approach:

a. Construct an analogy to a simpler paradigm (kernel methods).

b. Prove the analogy actually holds for sufficiently wide networks.

c. Use the analysis from the kernel method to understand training
dynamics of the neural network.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 4 / 17



Problem Setting

Given network fθ : Rd → R, we have two distinctive regimes:
Underparameterized Learning: n ≥ p, θ ∈ Rp, D = {(xi , yi )}ni=1

Overparameterized Learning: p ≥ n, θ ∈ Rp, D = {(xi , yi )}ni=1

Either way, we optimize θ to minimize an empirical loss (here, quadratic):

L(θ,D) =
1

n

n∑
i=1

ℓ(fθ(xi ), yi ) =
1

n
∥fθ(x)− y∥22 (1)

Q: Why does overparameterized learning generalize?
A: NTK’s approach:

a. Construct an analogy to a simpler paradigm (kernel methods).

b. Prove the analogy actually holds for sufficiently wide networks.

c. Use the analysis from the kernel method to understand training
dynamics of the neural network.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 4 / 17



Pre-Requisite 1/3 – Taylor Series

We can approximate function g using a polynomial via the Taylor Series:

Pa(x) =
∞∑
i=0

g (n)(a)

n!
(x − a)n (2)

The first-order Taylor Expansion is a linear approximation of the function:

Pa(x) = g(a) + g ′(a)(x − a) (3)

We will use the first-order approximation to model training dynamics in
neural networks.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 5 / 17



Pre-Requisite 1/3 – Taylor Series

We can approximate function g using a polynomial via the Taylor Series:

Pa(x) =
∞∑
i=0

g (n)(a)

n!
(x − a)n (2)

The first-order Taylor Expansion is a linear approximation of the function:

Pa(x) = g(a) + g ′(a)(x − a) (3)

We will use the first-order approximation to model training dynamics in
neural networks.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 5 / 17



Pre-Requisite 1/3 – Taylor Series

We can approximate function g using a polynomial via the Taylor Series:

Pa(x) =
∞∑
i=0

g (n)(a)

n!
(x − a)n (2)

The first-order Taylor Expansion is a linear approximation of the function:

Pa(x) = g(a) + g ′(a)(x − a) (3)

We will use the first-order approximation to model training dynamics in
neural networks.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 5 / 17



Pre-Requisite 2/3 – Operator Norm

The operator norm of matrix A is the maximum amount of stretching that
A can do to arbitrary vector x :

A ∈ Rm×n, x ∈ Rn (4)

∥A∥op = max
x∈Rn

∥Ax∥p
∥x∥q

(5)

Usually p = q = 2.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 6 / 17



Pre-Requisite 3/3 – Kernel Methods

K : Rm × Rm → R is a kernel if ∃ϕ : X → H s.t:

K (x , x ′) = ϕ(x)Tϕ(x ′) = ⟨ϕ(x), ϕ(x ′)⟩ (6)

Any PSD matrix defines a kernel.

A kernel methods are instance-based learners, instead of learning
parameters over input features, we learn parameters over data-pairs, and
interpolate using the kernel function to predict for the unseen sample.

As an example:

ŷ = sgn
n∑

i=1

wiyik(x , x
′) (7)

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 7 / 17



Pre-Requisite 3/3 – Kernel Methods

K : Rm × Rm → R is a kernel if ∃ϕ : X → H s.t:

K (x , x ′) = ϕ(x)Tϕ(x ′) = ⟨ϕ(x), ϕ(x ′)⟩ (6)

Any PSD matrix defines a kernel.

A kernel methods are instance-based learners, instead of learning
parameters over input features, we learn parameters over data-pairs, and
interpolate using the kernel function to predict for the unseen sample.

As an example:

ŷ = sgn
n∑

i=1

wiyik(x , x
′) (7)

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 7 / 17



Pre-Requisite 3/3 – Kernel Methods

K : Rm × Rm → R is a kernel if ∃ϕ : X → H s.t:

K (x , x ′) = ϕ(x)Tϕ(x ′) = ⟨ϕ(x), ϕ(x ′)⟩ (6)

Any PSD matrix defines a kernel.

A kernel methods are instance-based learners, instead of learning
parameters over input features, we learn parameters over data-pairs, and
interpolate using the kernel function to predict for the unseen sample.

As an example:

ŷ = sgn
n∑

i=1

wiyik(x , x
′) (7)

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 7 / 17



Outline

1 Background & Intuition

2 Neural Tangent Kernel

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 8 / 17



Neural Network Setup

We have fully-connected network fθ with n0, . . . , nL neurons in each layer,
activation function σ : R → R with pre-activations α̃ and activations α
defined recursively as follows:

α(0)(x ; θ) = x (8)

α̃(ℓ+1)(x ; θ) =
1

√
nℓ
W (ℓ)α(ℓ)(x ; θ) + βb(ℓ) (9)

α(ℓ)(x ; θ) = σ(α̃(ℓ)(x ; θ)) (10)

A realization function F (L) : Rp → F maps parameters to a function.

At initialization, θ ∼ N (0, Ip). As a result at initialization, our network is
equivalent to a gaussian process.

Aside

Factors 1/√nℓ, β scale gradients & enable consistent aymptotic behavior.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 9 / 17



Neural Network Setup

We have fully-connected network fθ with n0, . . . , nL neurons in each layer,
activation function σ : R → R with pre-activations α̃ and activations α
defined recursively as follows:

α(0)(x ; θ) = x (8)

α̃(ℓ+1)(x ; θ) =
1

√
nℓ
W (ℓ)α(ℓ)(x ; θ) + βb(ℓ) (9)

α(ℓ)(x ; θ) = σ(α̃(ℓ)(x ; θ)) (10)

A realization function F (L) : Rp → F maps parameters to a function.

At initialization, θ ∼ N (0, Ip).

As a result at initialization, our network is
equivalent to a gaussian process.

Aside

Factors 1/√nℓ, β scale gradients & enable consistent aymptotic behavior.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 9 / 17



Neural Network Setup

We have fully-connected network fθ with n0, . . . , nL neurons in each layer,
activation function σ : R → R with pre-activations α̃ and activations α
defined recursively as follows:

α(0)(x ; θ) = x (8)

α̃(ℓ+1)(x ; θ) =
1

√
nℓ
W (ℓ)α(ℓ)(x ; θ) + βb(ℓ) (9)

α(ℓ)(x ; θ) = σ(α̃(ℓ)(x ; θ)) (10)

A realization function F (L) : Rp → F maps parameters to a function.

At initialization, θ ∼ N (0, Ip). As a result at initialization, our network is
equivalent to a gaussian process.

Aside

Factors 1/√nℓ, β scale gradients & enable consistent aymptotic behavior.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 9 / 17



Neural Network Setup

We have fully-connected network fθ with n0, . . . , nL neurons in each layer,
activation function σ : R → R with pre-activations α̃ and activations α
defined recursively as follows:

α(0)(x ; θ) = x (8)

α̃(ℓ+1)(x ; θ) =
1

√
nℓ
W (ℓ)α(ℓ)(x ; θ) + βb(ℓ) (9)

α(ℓ)(x ; θ) = σ(α̃(ℓ)(x ; θ)) (10)

A realization function F (L) : Rp → F maps parameters to a function.

At initialization, θ ∼ N (0, Ip). As a result at initialization, our network is
equivalent to a gaussian process.

Aside

Factors 1/√nℓ, β scale gradients & enable consistent aymptotic behavior.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 9 / 17



Studying Convergence in Function Space

Notice that quadratic loss2 is convex w.r.t. function space but often
non-convex w.r.t. parameter space.

C : F → R Convex :D (11)

C ◦ F (L) : Rp → R Highly Non-Convex D: (12)

Now, if we could analyze training in the convex setting, we can obtain
meaningful insight about convergence of these networks.
Q1: How can we do that?
A1: By constructing a first-order approximation of training dynamics.

Q2: Why can we do that?
A2: In the overparameterized regime, learning is lazy.

We’ll answer the questions in detail, but in reverse order.

2also most others
Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 10 / 17



Studying Convergence in Function Space

Notice that quadratic loss2 is convex w.r.t. function space but often
non-convex w.r.t. parameter space.

C : F → R Convex :D (11)

C ◦ F (L) : Rp → R Highly Non-Convex D: (12)

Now, if we could analyze training in the convex setting, we can obtain
meaningful insight about convergence of these networks.

Q1: How can we do that?
A1: By constructing a first-order approximation of training dynamics.

Q2: Why can we do that?
A2: In the overparameterized regime, learning is lazy.

We’ll answer the questions in detail, but in reverse order.

2also most others
Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 10 / 17



Studying Convergence in Function Space

Notice that quadratic loss2 is convex w.r.t. function space but often
non-convex w.r.t. parameter space.

C : F → R Convex :D (11)

C ◦ F (L) : Rp → R Highly Non-Convex D: (12)

Now, if we could analyze training in the convex setting, we can obtain
meaningful insight about convergence of these networks.
Q1: How can we do that?
A1: By constructing a first-order approximation of training dynamics.

Q2: Why can we do that?
A2: In the overparameterized regime, learning is lazy.

We’ll answer the questions in detail, but in reverse order.

2also most others
Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 10 / 17



Studying Convergence in Function Space

Notice that quadratic loss2 is convex w.r.t. function space but often
non-convex w.r.t. parameter space.

C : F → R Convex :D (11)

C ◦ F (L) : Rp → R Highly Non-Convex D: (12)

Now, if we could analyze training in the convex setting, we can obtain
meaningful insight about convergence of these networks.
Q1: How can we do that?
A1: By constructing a first-order approximation of training dynamics.

Q2: Why can we do that?

A2: In the overparameterized regime, learning is lazy.

We’ll answer the questions in detail, but in reverse order.

2also most others
Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 10 / 17



Studying Convergence in Function Space

Notice that quadratic loss2 is convex w.r.t. function space but often
non-convex w.r.t. parameter space.

C : F → R Convex :D (11)

C ◦ F (L) : Rp → R Highly Non-Convex D: (12)

Now, if we could analyze training in the convex setting, we can obtain
meaningful insight about convergence of these networks.
Q1: How can we do that?
A1: By constructing a first-order approximation of training dynamics.

Q2: Why can we do that?
A2: In the overparameterized regime, learning is lazy.

We’ll answer the questions in detail, but in reverse order.

2also most others
Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 10 / 17



Studying Convergence in Function Space

Notice that quadratic loss2 is convex w.r.t. function space but often
non-convex w.r.t. parameter space.

C : F → R Convex :D (11)

C ◦ F (L) : Rp → R Highly Non-Convex D: (12)

Now, if we could analyze training in the convex setting, we can obtain
meaningful insight about convergence of these networks.
Q1: How can we do that?
A1: By constructing a first-order approximation of training dynamics.

Q2: Why can we do that?
A2: In the overparameterized regime, learning is lazy.

We’ll answer the questions in detail, but in reverse order.

2also most others
Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 10 / 17



Lazy Learning

For L-smooth f , gradient descent using small η guarantees convergent loss.

L(θt+1,D) ≤ L(θt ,D), η ≤ 1/L (13)

∥θ − θ0∥ ≈ ∥fθ0(x)− y∥
∥∇θfθ0(x)∥op

(14)

Takeaway: With gaussian initialization, as θ ∈ Rp s.t. p → ∞

∃θ∗ s.t. L(fθ∗ ,D) = min
θ

L(fθ,D) and ∥θ∗ − θ0∥ < B ≪ ∞ (15)

We can see this by the change of ∥θ∥ as θ ∈ R10,R100,R1000:

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 11 / 17



Lazy Learning

For L-smooth f , gradient descent using small η guarantees convergent loss.

L(θt+1,D) ≤ L(θt ,D), η ≤ 1/L (13)

∥θ − θ0∥ ≈ ∥fθ0(x)− y∥
∥∇θfθ0(x)∥op

(14)

Takeaway: With gaussian initialization, as θ ∈ Rp s.t. p → ∞

∃θ∗ s.t. L(fθ∗ ,D) = min
θ

L(fθ,D) and ∥θ∗ − θ0∥ < B ≪ ∞ (15)

We can see this by the change of ∥θ∥ as θ ∈ R10,R100,R1000:

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 11 / 17



Lazy Learning

For L-smooth f , gradient descent using small η guarantees convergent loss.

L(θt+1,D) ≤ L(θt ,D), η ≤ 1/L (13)

∥θ − θ0∥ ≈ ∥fθ0(x)− y∥
∥∇θfθ0(x)∥op

(14)

Takeaway: With gaussian initialization, as θ ∈ Rp s.t. p → ∞

∃θ∗ s.t. L(fθ∗ ,D) = min
θ

L(fθ,D) and ∥θ∗ − θ0∥ < B ≪ ∞ (15)

We can see this by the change of ∥θ∥ as θ ∈ R10,R100,R1000:

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 11 / 17



Linear Approximation of fθ

Applying first-order taylor expansion of f with respect to the evolution of
parameters θ, we have:

gθ(x) := fθ0(x) + ⟨∇θfθ0(x), θ − θ0︸ ︷︷ ︸
∆θ

⟩ (16)

For convenience of analysis, we can set θ0 s.t. fθ0(x) = 0 ∀x . Now,

gθ(x) := ⟨∇θfθ0(x)︸ ︷︷ ︸
ϕ(x)

,∆θ⟩ (17)

Since we are in the overparameterized lazy learning regime, we have
θ ≈ θ0, and gθ ≈ fθ, which means:

L(fθ,D) ≈ L(gθ,D) (18)

Now for G (L) : Rp → G cost-composition C ◦ GL : Rp → R is convex!!

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 12 / 17



Linear Approximation of fθ

Applying first-order taylor expansion of f with respect to the evolution of
parameters θ, we have:

gθ(x) := fθ0(x) + ⟨∇θfθ0(x), θ − θ0︸ ︷︷ ︸
∆θ

⟩ (16)

For convenience of analysis, we can set θ0 s.t. fθ0(x) = 0 ∀x .

Now,

gθ(x) := ⟨∇θfθ0(x)︸ ︷︷ ︸
ϕ(x)

,∆θ⟩ (17)

Since we are in the overparameterized lazy learning regime, we have
θ ≈ θ0, and gθ ≈ fθ, which means:

L(fθ,D) ≈ L(gθ,D) (18)

Now for G (L) : Rp → G cost-composition C ◦ GL : Rp → R is convex!!

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 12 / 17



Linear Approximation of fθ

Applying first-order taylor expansion of f with respect to the evolution of
parameters θ, we have:

gθ(x) := fθ0(x) + ⟨∇θfθ0(x), θ − θ0︸ ︷︷ ︸
∆θ

⟩ (16)

For convenience of analysis, we can set θ0 s.t. fθ0(x) = 0 ∀x . Now,

gθ(x) := ⟨∇θfθ0(x)︸ ︷︷ ︸
ϕ(x)

,∆θ⟩ (17)

Since we are in the overparameterized lazy learning regime, we have
θ ≈ θ0, and gθ ≈ fθ, which means:

L(fθ,D) ≈ L(gθ,D) (18)

Now for G (L) : Rp → G cost-composition C ◦ GL : Rp → R is convex!!

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 12 / 17



Linear Approximation of fθ

Applying first-order taylor expansion of f with respect to the evolution of
parameters θ, we have:

gθ(x) := fθ0(x) + ⟨∇θfθ0(x), θ − θ0︸ ︷︷ ︸
∆θ

⟩ (16)

For convenience of analysis, we can set θ0 s.t. fθ0(x) = 0 ∀x . Now,

gθ(x) := ⟨∇θfθ0(x)︸ ︷︷ ︸
ϕ(x)

,∆θ⟩ (17)

Since we are in the overparameterized lazy learning regime, we have
θ ≈ θ0, and gθ ≈ fθ, which means:

L(fθ,D) ≈ L(gθ,D) (18)

Now for G (L) : Rp → G cost-composition C ◦ GL : Rp → R is convex!!

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 12 / 17



Linear Approximation of fθ

Applying first-order taylor expansion of f with respect to the evolution of
parameters θ, we have:

gθ(x) := fθ0(x) + ⟨∇θfθ0(x), θ − θ0︸ ︷︷ ︸
∆θ

⟩ (16)

For convenience of analysis, we can set θ0 s.t. fθ0(x) = 0 ∀x . Now,

gθ(x) := ⟨∇θfθ0(x)︸ ︷︷ ︸
ϕ(x)

,∆θ⟩ (17)

Since we are in the overparameterized lazy learning regime, we have
θ ≈ θ0, and gθ ≈ fθ, which means:

L(fθ,D) ≈ L(gθ,D) (18)

Now for G (L) : Rp → G cost-composition C ◦ GL : Rp → R is convex!!

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 12 / 17



Connection to Convergence

Next, notice ϕ(x) does not depend on post training parameters.

We can use this to define feature map Φ over the entire dataset:

Φ =
[
ϕ(xi )

T
]
n
=

[
∇fθ0(xi )

T
]
n
∈ Rn×p (19)

Optimizing L(fθ) ≈ optimizing L(gθ) which is convex in parameter space.
So this is basically just linear regression:

min
gθ

∥y − gθ(x)∥22 = min
∆θ

∥y − Φ ·∆θ∥22 (20)

Comparing in output space, we can show that decay of error is exponential.

Caveat: We’re discussing gradient descent, not stochastic gradient
descent. In practice, we see performance dropoffs when optimizing over gθ.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 13 / 17



Connection to Convergence

Next, notice ϕ(x) does not depend on post training parameters.

We can use this to define feature map Φ over the entire dataset:

Φ =
[
ϕ(xi )

T
]
n
=

[
∇fθ0(xi )

T
]
n
∈ Rn×p (19)

Optimizing L(fθ) ≈ optimizing L(gθ) which is convex in parameter space.
So this is basically just linear regression:

min
gθ

∥y − gθ(x)∥22 = min
∆θ

∥y − Φ ·∆θ∥22 (20)

Comparing in output space, we can show that decay of error is exponential.

Caveat: We’re discussing gradient descent, not stochastic gradient
descent. In practice, we see performance dropoffs when optimizing over gθ.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 13 / 17



Connection to Convergence

Next, notice ϕ(x) does not depend on post training parameters.

We can use this to define feature map Φ over the entire dataset:

Φ =
[
ϕ(xi )

T
]
n
=

[
∇fθ0(xi )

T
]
n
∈ Rn×p (19)

Optimizing L(fθ) ≈ optimizing L(gθ) which is convex in parameter space.
So this is basically just linear regression:

min
gθ

∥y − gθ(x)∥22 = min
∆θ

∥y − Φ ·∆θ∥22 (20)

Comparing in output space, we can show that decay of error is exponential.

Caveat: We’re discussing gradient descent, not stochastic gradient
descent. In practice, we see performance dropoffs when optimizing over gθ.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 13 / 17



Connection to Convergence

Next, notice ϕ(x) does not depend on post training parameters.

We can use this to define feature map Φ over the entire dataset:

Φ =
[
ϕ(xi )

T
]
n
=

[
∇fθ0(xi )

T
]
n
∈ Rn×p (19)

Optimizing L(fθ) ≈ optimizing L(gθ) which is convex in parameter space.
So this is basically just linear regression:

min
gθ

∥y − gθ(x)∥22 = min
∆θ

∥y − Φ ·∆θ∥22 (20)

Comparing in output space, we can show that decay of error is exponential.

Caveat: We’re discussing gradient descent, not stochastic gradient
descent. In practice, we see performance dropoffs when optimizing over gθ.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 13 / 17



Defining NTK

We can define a kernel using our feature map ϕ:

κ(x , x ′) = ϕ(x)Tϕ(x ′) = ⟨∇θfθ0(x),∇θfθ0(x
′)⟩ (21)

This kernel is the neural tangent kernel.

The NTK effectively exists as part of gradient descent:

θt+1 = θt −∇θL(fθt ,D) (22)

∂θ

∂t
= −η∇θL(θ,D) = −η

n

n∑
i=1

∇θfθ(xi )∇fθℓ(fθ, yi ) (23)

∂fθ(x)

∂t
=

∂fθ(x)

∂θ

∂θ

∂t
= −η

n

n∑
i=1

∇θfθ(x)∇θfθ(xi )︸ ︷︷ ︸
NTK

∇fθℓ(fθ, yi ) (24)

The NTK depends on θ0, is random at initialization and varies during
training, but in the limit, this changes.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 14 / 17



Defining NTK

We can define a kernel using our feature map ϕ:

κ(x , x ′) = ϕ(x)Tϕ(x ′) = ⟨∇θfθ0(x),∇θfθ0(x
′)⟩ (21)

This kernel is the neural tangent kernel.

The NTK effectively exists as part of gradient descent:

θt+1 = θt −∇θL(fθt ,D) (22)

∂θ

∂t
= −η∇θL(θ,D) = −η

n

n∑
i=1

∇θfθ(xi )∇fθℓ(fθ, yi ) (23)

∂fθ(x)

∂t
=

∂fθ(x)

∂θ

∂θ

∂t
= −η

n

n∑
i=1

∇θfθ(x)∇θfθ(xi )︸ ︷︷ ︸
NTK

∇fθℓ(fθ, yi ) (24)

The NTK depends on θ0, is random at initialization and varies during
training, but in the limit, this changes.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 14 / 17



Defining NTK

We can define a kernel using our feature map ϕ:

κ(x , x ′) = ϕ(x)Tϕ(x ′) = ⟨∇θfθ0(x),∇θfθ0(x
′)⟩ (21)

This kernel is the neural tangent kernel.

The NTK effectively exists as part of gradient descent:

θt+1 = θt −∇θL(fθt ,D) (22)

∂θ

∂t
= −η∇θL(θ,D) = −η

n

n∑
i=1

∇θfθ(xi )∇fθℓ(fθ, yi ) (23)

∂fθ(x)

∂t
=

∂fθ(x)

∂θ

∂θ

∂t
= −η

n

n∑
i=1

∇θfθ(x)∇θfθ(xi )︸ ︷︷ ︸
NTK

∇fθℓ(fθ, yi ) (24)

The NTK depends on θ0, is random at initialization and varies during
training, but in the limit, this changes.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 14 / 17



Limiting Behavior of NTK

When the width tends to infinity, the NTK is deterministic at
intitialization and doesn’t change through training:

k → ∞ =⇒ fθ,k → N (0,Σk) ∀k ∈ {1, . . . , nL} (25)

Where covariance matrices Σk are defined recursively as follows:

Σ1(x , x
′) =

1

n0
xT x ′ + β2 (26)

Σk+1(x , x
′) = Ef∼N (0,Σk )[σ(f (x))σ(f (x

′))] + β2 (27)

Which we further defines the limiting NTK:

κ1(x , x
′) = Σ1(x , x

′) (28)

κk+1(x , x
′) = κk(x , x

′)Σ′
k+1(x , x

′) + Σk(x , x
′) (29)

Σ′
k+1(x , x

′) = Ef∼N (0,Σk )[σ
′(f (x))σ′(f (x ′))] + β2 (30)

Which is independent of initialization.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 15 / 17



Limiting Behavior of NTK

When the width tends to infinity, the NTK is deterministic at
intitialization and doesn’t change through training:

k → ∞ =⇒ fθ,k → N (0,Σk) ∀k ∈ {1, . . . , nL} (25)

Where covariance matrices Σk are defined recursively as follows:

Σ1(x , x
′) =

1

n0
xT x ′ + β2 (26)

Σk+1(x , x
′) = Ef∼N (0,Σk )[σ(f (x))σ(f (x

′))] + β2 (27)

Which we further defines the limiting NTK:

κ1(x , x
′) = Σ1(x , x

′) (28)

κk+1(x , x
′) = κk(x , x

′)Σ′
k+1(x , x

′) + Σk(x , x
′) (29)

Σ′
k+1(x , x

′) = Ef∼N (0,Σk )[σ
′(f (x))σ′(f (x ′))] + β2 (30)

Which is independent of initialization.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 15 / 17



Limiting Behavior of NTK

When the width tends to infinity, the NTK is deterministic at
intitialization and doesn’t change through training:

k → ∞ =⇒ fθ,k → N (0,Σk) ∀k ∈ {1, . . . , nL} (25)

Where covariance matrices Σk are defined recursively as follows:

Σ1(x , x
′) =

1

n0
xT x ′ + β2 (26)

Σk+1(x , x
′) = Ef∼N (0,Σk )[σ(f (x))σ(f (x

′))] + β2 (27)

Which we further defines the limiting NTK:

κ1(x , x
′) = Σ1(x , x

′) (28)

κk+1(x , x
′) = κk(x , x

′)Σ′
k+1(x , x

′) + Σk(x , x
′) (29)

Σ′
k+1(x , x

′) = Ef∼N (0,Σk )[σ
′(f (x))σ′(f (x ′))] + β2 (30)

Which is independent of initialization.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 15 / 17



Training within the NTK Regime

During training fθ follows a descent along the negative kernel gradient:

∂t fθt = −∇Φ(L)
C|fθt (31)

The Limiting Kernel is always positive definite. By performing an
eigendecomposition, we can decouple the gradient flow into eigenvectors,
that decay at the rate of their eigenvalues.

Since they all decay, NTK guaranteees that infinite width neural networks
converge to a global minimum when trained to minimize empirical loss.

Bonus: We have theoretical motivations for early-stopping; once the k
largest eigenvectors decay beyond a set threshold, stop training.

Caveat: Computing NTK is expensive Ω(n2) while regular GD uses O(d)
samples.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 16 / 17



Training within the NTK Regime

During training fθ follows a descent along the negative kernel gradient:

∂t fθt = −∇Φ(L)
C|fθt (31)

The Limiting Kernel is always positive definite. By performing an
eigendecomposition, we can decouple the gradient flow into eigenvectors,
that decay at the rate of their eigenvalues.

Since they all decay, NTK guaranteees that infinite width neural networks
converge to a global minimum when trained to minimize empirical loss.

Bonus: We have theoretical motivations for early-stopping; once the k
largest eigenvectors decay beyond a set threshold, stop training.

Caveat: Computing NTK is expensive Ω(n2) while regular GD uses O(d)
samples.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 16 / 17



Training within the NTK Regime

During training fθ follows a descent along the negative kernel gradient:

∂t fθt = −∇Φ(L)
C|fθt (31)

The Limiting Kernel is always positive definite. By performing an
eigendecomposition, we can decouple the gradient flow into eigenvectors,
that decay at the rate of their eigenvalues.

Since they all decay, NTK guaranteees that infinite width neural networks
converge to a global minimum when trained to minimize empirical loss.

Bonus: We have theoretical motivations for early-stopping; once the k
largest eigenvectors decay beyond a set threshold, stop training.

Caveat: Computing NTK is expensive Ω(n2) while regular GD uses O(d)
samples.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 16 / 17



Training within the NTK Regime

During training fθ follows a descent along the negative kernel gradient:

∂t fθt = −∇Φ(L)
C|fθt (31)

The Limiting Kernel is always positive definite. By performing an
eigendecomposition, we can decouple the gradient flow into eigenvectors,
that decay at the rate of their eigenvalues.

Since they all decay, NTK guaranteees that infinite width neural networks
converge to a global minimum when trained to minimize empirical loss.

Bonus: We have theoretical motivations for early-stopping; once the k
largest eigenvectors decay beyond a set threshold, stop training.

Caveat: Computing NTK is expensive Ω(n2) while regular GD uses O(d)
samples.

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 16 / 17



Thank you!

Have an awesome rest of your day!

Slides: https://jinen.setpal.net/slides/ntk.pdf

References:

1. Dwaraknath, Rajat. (Nov 2019). Understanding the Neural Tangent
Kernel. https://www.eigentales.com/NTK/

2. Ma, Tengyu. (Nov 2022). Stanford CS229M - Lecture 13: Neural
Tangent Kernel. https://youtu.be/btphvvnad0A

3. Ma, Tengyu. (Nov 2022). Stanford CS229M - Lecture 14: Neural
Tangent Kernel, Implicit regularization of gradient descent.
https://youtu.be/xpT1ymwCk9w

4. Weng, Lilian. (Sep 2022). Some math behind neural tangent kernel.
https://lilianweng.github.io/posts/2022-09-08-ntk/

5. Pietraho, Thomas. Math 2805: Mathematical principles of machine
learning. https://web.bowdoin.edu/~tpietrah/hugo/math2805/
docs/unsupervised_learning/dim_reduction/hw_operator_norms/

Machine Learning @ Purdue Neural Tangent Kernel March 6, 2025 17 / 17

https://jinen.setpal.net/slides/ntk.pdf
https://www.eigentales.com/NTK/
https://youtu.be/btphvvnad0A
https://youtu.be/xpT1ymwCk9w
https://lilianweng.github.io/posts/2022-09-08-ntk/
https://web.bowdoin.edu/~tpietrah/hugo/math2805/docs/unsupervised_learning/dim_reduction/hw_operator_norms/
https://web.bowdoin.edu/~tpietrah/hugo/math2805/docs/unsupervised_learning/dim_reduction/hw_operator_norms/

	Background & Intuition
	Neural Tangent Kernel

