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Dynamic Optimal Transport (1/2)

We have explored the following Optimal Transport problem:

LC (a, b) := min
P∈U(a,b)

⟨C ,P⟩F =
∑
i ,j

Ci ,jPi ,j (1)

This notion has a couple of properties / constraints:

1. U represents the set of valid couplings, which encapsulates criteria:

a. Mass is conserved.
b. Applying the coupling gets us the target mesures: β = P♯α

2. The optimization problem is convex.

3. If C is a distance in element space, LC is a distance in measure space.

Observation: C = ∥ · ∥22 =⇒ LC is squared geodesic distance.
Implication: Solving for Endpoints → Interpolatable Transport.

How? Using fluid dynamics!
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Dynamic Optimal Transport (2/2)

The Dynamic5 Optimal Transport enables us to borrow fluid dynamics
literature, and understand how the measure evolves as time progresses:

Let X ,Y ∈ Rd , C (x , y) = ∥x − y∥2 (2)

With measures αt s.t. T♯α0 = α1 ∀t ∈ [0, 1] (3)

We can describe the path in continuous time using by moving αt along a
vector field vt . Infinitesimally, our transport cost can be computed as:

∥vt∥L2(αt) =

(∫
Rd

∥vt(x)∥2dαt(x)
)1/2

(4)

Across time t, our net transport cost is:

W 2
2 (α0, α1) = min

αt ,vt

∫ 1

0

∫
Rd

∥vt(x)∥2 dαt(x) dt (5)

To satisfy mass conservation, we also enforce the following constraint:

∂tαt + div(αtvt) = 0 (6)

5Adjective AND Noun.
ECE ML Reading Group Normalizing Flows April 30, 2025 5 / 17



Dynamic Optimal Transport (2/2)

The Dynamic5 Optimal Transport enables us to borrow fluid dynamics
literature, and understand how the measure evolves as time progresses:

Let X ,Y ∈ Rd , C (x , y) = ∥x − y∥2 (2)

With measures αt s.t. T♯α0 = α1 ∀t ∈ [0, 1] (3)

We can describe the path in continuous time using by moving αt along a
vector field vt .

Infinitesimally, our transport cost can be computed as:

∥vt∥L2(αt) =

(∫
Rd

∥vt(x)∥2dαt(x)
)1/2

(4)

Across time t, our net transport cost is:

W 2
2 (α0, α1) = min

αt ,vt

∫ 1

0

∫
Rd

∥vt(x)∥2 dαt(x) dt (5)

To satisfy mass conservation, we also enforce the following constraint:

∂tαt + div(αtvt) = 0 (6)

5Adjective AND Noun.
ECE ML Reading Group Normalizing Flows April 30, 2025 5 / 17



Dynamic Optimal Transport (2/2)

The Dynamic5 Optimal Transport enables us to borrow fluid dynamics
literature, and understand how the measure evolves as time progresses:

Let X ,Y ∈ Rd , C (x , y) = ∥x − y∥2 (2)

With measures αt s.t. T♯α0 = α1 ∀t ∈ [0, 1] (3)

We can describe the path in continuous time using by moving αt along a
vector field vt . Infinitesimally, our transport cost can be computed as:

∥vt∥L2(αt) =

(∫
Rd

∥vt(x)∥2dαt(x)
)1/2

(4)

Across time t, our net transport cost is:

W 2
2 (α0, α1) = min

αt ,vt

∫ 1

0

∫
Rd

∥vt(x)∥2 dαt(x) dt (5)

To satisfy mass conservation, we also enforce the following constraint:

∂tαt + div(αtvt) = 0 (6)

5Adjective AND Noun.
ECE ML Reading Group Normalizing Flows April 30, 2025 5 / 17



Dynamic Optimal Transport (2/2)

The Dynamic5 Optimal Transport enables us to borrow fluid dynamics
literature, and understand how the measure evolves as time progresses:

Let X ,Y ∈ Rd , C (x , y) = ∥x − y∥2 (2)

With measures αt s.t. T♯α0 = α1 ∀t ∈ [0, 1] (3)

We can describe the path in continuous time using by moving αt along a
vector field vt . Infinitesimally, our transport cost can be computed as:

∥vt∥L2(αt) =

(∫
Rd

∥vt(x)∥2dαt(x)
)1/2

(4)

Across time t, our net transport cost is:

W 2
2 (α0, α1) = min

αt ,vt

∫ 1

0

∫
Rd

∥vt(x)∥2 dαt(x) dt (5)

To satisfy mass conservation, we also enforce the following constraint:

∂tαt + div(αtvt) = 0 (6)

5Adjective AND Noun.
ECE ML Reading Group Normalizing Flows April 30, 2025 5 / 17



Dynamic Optimal Transport (2/2)

The Dynamic5 Optimal Transport enables us to borrow fluid dynamics
literature, and understand how the measure evolves as time progresses:

Let X ,Y ∈ Rd , C (x , y) = ∥x − y∥2 (2)

With measures αt s.t. T♯α0 = α1 ∀t ∈ [0, 1] (3)

We can describe the path in continuous time using by moving αt along a
vector field vt . Infinitesimally, our transport cost can be computed as:

∥vt∥L2(αt) =

(∫
Rd

∥vt(x)∥2dαt(x)
)1/2

(4)

Across time t, our net transport cost is:

W 2
2 (α0, α1) = min

αt ,vt

∫ 1

0

∫
Rd

∥vt(x)∥2 dαt(x) dt (5)

To satisfy mass conservation, we also enforce the following constraint:

∂tαt + div(αtvt) = 0 (6)
5Adjective AND Noun.
ECE ML Reading Group Normalizing Flows April 30, 2025 5 / 17



Mean-Field Games

Problem: The mass-conservation constraint, requiring computing αtvt
makes the problem non-convex.

Solution: We can reparameterize the problem using Mean-Field Games:

1. MFGs are ∞-agent games with each agent in spatial domain trying to
minimize individual cost. We assume a density function at time t.

min
αt ,vt

T (α0, α1) +

∫ 1

0

∫
Rd

L(x , vt(x), αt(x)) dx dt (7)

2. We define agent trajectories F : Rd × [0, 1] → Rd satisfying:{
∂tF (x , t) = vt(F (x , t)) ∀x ∈ Rd , t ∈ [0, 1]

F (x , 0) = x
(8)

3. Which under the reparameterization is convex :

min
αt ,vt

∫ 1

0

∫
Rd

∥vt(x)∥2 dαt(x) dt = min
F

∫ 1

0

∫
Rd

∥∂tF (x , t)∥2α0(x) dx dt
(9)

Next, we need to find a way to learn F . Let’s talk normalizing flows.
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Generative Modelling Framework

Image Credit: https://lilianweng.github.io/posts/2018-10-13-flow-models/

ECE ML Reading Group Normalizing Flows April 30, 2025 8 / 17

https://lilianweng.github.io/posts/2018-10-13-flow-models/


Change of Variables

Since mass vectors are sampled from Σ, αt are probabibility measures.

Setting y = T (x), we can apply the change of variables formula:

α1(y) = α0(T
−1
♯ α1(y))| det∇yT

−1
♯ α1(y)| =

α0(T
−1
♯ α1(y))

| det∇xT♯ ◦ T−1
♯ α1(y)|

(10)

To compute the PDF of α1.

We still need a known α0, so we use the multivariate normal N (0, I ):

α0(x) =

(
1

2π

)d/2

exp

(
−1

2
∥x∥2

)
(11)

Our goal is to learn the inverse direction – a function from target measure
α1 to source measure α0. Next, we can discuss approches to model T .
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Invertible Functions

We need three major properties from our choice of model:

1. Must be invertible, so that we can learn the normalizing direction.

2. Must be expressive enough to model the target distribution.

3. Must be efficient to compute.

The class of functions that satisfies these properties are diffeomorphisms.

Diffeomorphisms are arbitrarily composable. Let yℓ := fℓ be
diffemorphisms with inverses gℓ for ℓ ∈ {1, . . . , L}:

F := fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1 (12)

G := g1 ◦ g2 ◦ · · · ◦ gL−1 ◦ gL (13)

Then we have F = G−1. Additionally, we can also compose determinants:

det∇yF =
L∏

ℓ=1

det∇yℓfℓ (14)

This is huge for satisfying property 2.
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Optimization by Maximum Likelihood

Learning Normalizing Flows allows us to directly maximize log-likelihood:

min
θ

DKL(α1||T♯α0) = −Ex∼α1 [logα0(G (x)) + log | det∇yG |] + C (15)

With some constant C , which for purpose of optimization we can ignore.

Caveat: Models trained using DKL are volatile to initialization and
interpolate poorly:

Which we can fix by regularization to transport cost:
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Coupling Flows

One clever diffeomorphism is a coupling flow:

xB

xA

yB

yA

=

=

=

=

y

z

a)

b)

h

g
g

With random permutation Π, we define forward flow (α0 → α1) as:

x ′ := Π(x), w,b := hΘ(x ′
D/2+1:D) (16)

f
(Θk )
k (x) := Concat([x ′

1:D/2 ⊙ exp(w) + b, x ′
D/2+1:D ]) (17)

Subsequently inverse flow (α1 → α0) is defined as follows:

w,b := hΘ(yD/2+1:D) (18)

f
(Θk )

−1

k (y) := Π−1
(
Concat([(y1:D/2 − b)⊘ exp(w), yD/2+1:D ])

)
(19)
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Computing the log | det(·)|

Best part, the Jacobian of f
(Θk )

−1

k has the the following block form:

∇f
(Θk )

−1

k (y) =

 ID/2×D/2 0D/2×D/2

∂f
(Θk )

−1

k,D/2+1:D

∂y1:D/2
diag (exp (−w))



(20)

Which enables us to compute its determinant in linear time:

det∇f
(Θk )

−1

k (y) = exp
(∑

−wk

)
(21)

Which we can further use to compute composed log det∇F−1:

log det∇F−1(y) =
L−1∑
ℓ=0

D/2∑
i=1

−w
(ℓ)
i (22)

Implication: hΘ can be arbitrarily complex!
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Outline

1 Dynamic Optimal Transport

2 Normalizing Flows

3 Transport-Regularized Normalizing Flows

ECE ML Reading Group Normalizing Flows April 30, 2025 14 / 17



Setting the Terminal Condition

The final thing left to discuss is the terminal condition. We need F s.t:

F (x , 1) = y ∼ α1 ∀x ∈ Rd (23)

Instead of solving a constrained problem, we soft-constraint using DKL:

min
F

∫ 1

0

∫
Rd

∥∂tF (x , t)∥2α0(x) dx dt + λDKL(α1||F♯α0) (24)

DKL is conventional cost; we just add transport cost, hence new
formulation is called transport-regularized normalizing flows.

Discretizing across a composition of L flows, we have:

min
F

L · Ex∼α0

[
L−1∑
ℓ=0

∥Fℓ+1(x)− Fℓ(x)∥22

]
+ λDKL(α1||F♯α0) (25)

Using this, we can train transport-regularized normalizing flows.
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Implementation Details

If you can view this screen, I am making a mistake.
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Thank you!

Have an awesome rest of your day!

Slides: https://jinen.setpal.net/slides/nf.pdf
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