Transport-Regularized Normalizing Flows¹²³⁴ "Learning by Forgetting"

J. Setpal

April 30, 2025

 ¹Peyré, Cuturi. [Arxiv 2020]

 ²Kobyzev, Prince, Brubaker. [IEEE 2021]

 ³Papamakarios, et. al. [Arxiv 2021]

 ⁴Lai, et. al. [Journal of Computational Physics 2023]

 ECE ML Reading Group

 Normalizing Flows

 April 30, 2025

 1/17

Dynamic Optimal Transport

2 Normalizing Flows

3 Transport-Regularized Normalizing Flows

Image: Image:

臣

990

1 Dynamic Optimal Transport

Normalizing Flows

3 Transport-Regularized Normalizing Flows

臣

< ∃ >

Image: Image:

990

We have explored the following Optimal Transport problem:

$$L_{\boldsymbol{C}}(\boldsymbol{a},\boldsymbol{b}) := \min_{\boldsymbol{P} \in \mathcal{U}(\boldsymbol{a},\boldsymbol{b})} \langle \boldsymbol{C}, \boldsymbol{P} \rangle_{F} = \sum_{i,j} \boldsymbol{C}_{i,j} \boldsymbol{P}_{i,j}$$
(1)

< A

Э

We have explored the following Optimal Transport problem:

$$L_{\boldsymbol{C}}(\boldsymbol{a},\boldsymbol{b}) := \min_{\boldsymbol{P} \in \mathcal{U}(\boldsymbol{a},\boldsymbol{b})} \langle \boldsymbol{C}, \boldsymbol{P} \rangle_{F} = \sum_{i,j} \boldsymbol{C}_{i,j} \boldsymbol{P}_{i,j}$$
(1)

This notion has a couple of properties / constraints:

- 1. ${\mathcal U}$ represents the set of valid couplings, which encapsulates criteria:
 - a. Mass is conserved.
 - b. Applying the coupling gets us the target mesures: $\beta = {\pmb P}_{\sharp} \alpha$
- 2. The optimization problem is *convex*.
- 3. If C is a distance in element space, L_C is a distance in measure space.

We have explored the following Optimal Transport problem:

$$L_{\boldsymbol{C}}(\boldsymbol{a},\boldsymbol{b}) := \min_{\boldsymbol{P} \in \mathcal{U}(\boldsymbol{a},\boldsymbol{b})} \langle \boldsymbol{C}, \boldsymbol{P} \rangle_{F} = \sum_{i,j} \boldsymbol{C}_{i,j} \boldsymbol{P}_{i,j}$$
(1)

This notion has a couple of properties / constraints:

- 1. $\mathcal U$ represents the set of valid couplings, which encapsulates criteria:
 - a. Mass is conserved.
 - b. Applying the coupling gets us the target mesures: $\beta = {\pmb P}_{\sharp} \alpha$
- 2. The optimization problem is *convex*.
- 3. If C is a distance in element space, L_C is a distance in measure space.

Observation: $C = \| \cdot \|_2^2 \implies L_C$ is squared geodesic distance.

We have explored the following Optimal Transport problem:

$$L_{\boldsymbol{C}}(\boldsymbol{a},\boldsymbol{b}) := \min_{\boldsymbol{P} \in \mathcal{U}(\boldsymbol{a},\boldsymbol{b})} \langle \boldsymbol{C}, \boldsymbol{P} \rangle_{F} = \sum_{i,j} \boldsymbol{C}_{i,j} \boldsymbol{P}_{i,j}$$
(1)

This notion has a couple of properties / constraints:

- 1. $\mathcal U$ represents the set of valid couplings, which encapsulates criteria:
 - a. Mass is conserved.
 - b. Applying the coupling gets us the target mesures: $\beta = \mathbf{P}_{\sharp} \alpha$
- 2. The optimization problem is *convex*.
- 3. If C is a distance in element space, L_C is a distance in measure space.

Observation: $C = \| \cdot \|_2^2 \implies L_C$ is squared geodesic distance. **Implication:** Solving for Endpoints \rightarrow Interpolatable Transport.

We have explored the following Optimal Transport problem:

$$L_{\boldsymbol{C}}(\boldsymbol{a},\boldsymbol{b}) := \min_{\boldsymbol{P} \in \mathcal{U}(\boldsymbol{a},\boldsymbol{b})} \langle \boldsymbol{C}, \boldsymbol{P} \rangle_{F} = \sum_{i,j} \boldsymbol{C}_{i,j} \boldsymbol{P}_{i,j}$$
(1)

This notion has a couple of properties / constraints:

- 1. $\mathcal U$ represents the set of valid couplings, which encapsulates criteria:
 - a. Mass is conserved.
 - b. Applying the coupling gets us the target mesures: $\beta = \mathbf{P}_{\sharp} \alpha$
- 2. The optimization problem is *convex*.
- 3. If C is a distance in element space, L_C is a distance in measure space.

Observation: $C = \|\cdot\|_2^2 \implies L_C$ is squared geodesic distance. **Implication:** Solving for Endpoints \rightarrow Interpolatable Transport.

How? Using fluid dynamics!

The Dynamic⁵ Optimal Transport enables us to borrow fluid dynamics literature, and understand how the measure evolves as *time* progresses:

Let
$$\mathcal{X}, \mathcal{Y} \in \mathbb{R}^d$$
, $\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|^2$ (2)

With measures α_t s.t. $T_{\sharp}\alpha_0 = \alpha_1 \quad \forall t \in [0, 1]$ (3)

⁵Adjective AND Noun.

The Dynamic⁵ Optimal Transport enables us to borrow fluid dynamics literature, and understand how the measure evolves as *time* progresses:

Let
$$\mathcal{X}, \mathcal{Y} \in \mathbb{R}^d$$
, $\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|^2$ (2)

With measures α_t s.t. $T_{\sharp}\alpha_0 = \alpha_1 \quad \forall t \in [0, 1]$ (3)

We can describe the path in continuous time using by moving α_t along a vector field v_t .

⁵Adjective AND Noun.

The Dynamic⁵ Optimal Transport enables us to borrow fluid dynamics literature, and understand how the measure evolves as *time* progresses:

Let
$$\mathcal{X}, \mathcal{Y} \in \mathbb{R}^d$$
, $\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|^2$ (2)

With measures α_t s.t. $T_{\sharp}\alpha_0 = \alpha_1 \quad \forall t \in [0, 1]$ (3)

We can describe the path in continuous time using by moving α_t along a vector field v_t . Infinitesimally, our transport cost can be computed as:

$$\|\mathbf{v}_t\|_{L^2(\alpha_t)} = \left(\int_{\mathbb{R}^d} \|\mathbf{v}_t(\mathbf{x})\|^2 d\alpha_t(\mathbf{x})\right)^{1/2}$$
(4)

⁵Adjective AND Noun.

ECE ML Reading Group

The Dynamic⁵ Optimal Transport enables us to borrow fluid dynamics literature, and understand how the measure evolves as *time* progresses:

Let
$$\mathcal{X}, \mathcal{Y} \in \mathbb{R}^d$$
, $\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|^2$ (2)

With measures α_t s.t. $T_{\sharp}\alpha_0 = \alpha_1 \quad \forall t \in [0, 1]$ (3)

We can describe the path in continuous time using by moving α_t along a vector field v_t . Infinitesimally, our transport cost can be computed as:

$$\|\mathbf{v}_t\|_{L^2(\alpha_t)} = \left(\int_{\mathbb{R}^d} \|\mathbf{v}_t(\mathbf{x})\|^2 d\alpha_t(\mathbf{x})\right)^{1/2}$$
(4)

Across time t, our net transport cost is:

$$W_2^2(\alpha_0,\alpha_1) = \min_{\alpha_t,v_t} \int_0^1 \int_{\mathbb{R}^d} \|v_t(\boldsymbol{x})\|^2 \ d\alpha_t(\boldsymbol{x}) \ dt \tag{5}$$

⁵Adjective AND Noun.

The Dynamic⁵ Optimal Transport enables us to borrow fluid dynamics literature, and understand how the measure evolves as *time* progresses:

Let
$$\mathcal{X}, \mathcal{Y} \in \mathbb{R}^d$$
, $\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|^2$ (2)

With measures α_t s.t. $T_{\sharp}\alpha_0 = \alpha_1 \quad \forall t \in [0, 1]$ (3)

We can describe the path in continuous time using by moving α_t along a vector field v_t . Infinitesimally, our transport cost can be computed as:

$$\|\mathbf{v}_t\|_{L^2(\alpha_t)} = \left(\int_{\mathbb{R}^d} \|\mathbf{v}_t(\mathbf{x})\|^2 d\alpha_t(\mathbf{x})\right)^{1/2}$$
(4)

Across time t, our net transport cost is:

$$W_2^2(\alpha_0,\alpha_1) = \min_{\alpha_t,v_t} \int_0^1 \int_{\mathbb{R}^d} \|v_t(\boldsymbol{x})\|^2 \ d\alpha_t(\boldsymbol{x}) \ dt \tag{5}$$

To satisfy mass conservation, we also enforce the following constraint:

$$\partial_t \alpha_t + \operatorname{div}(\alpha_t v_t) = 0 \tag{6}$$

⁵Adjective AND Noun.

ECE ML Reading Group

April 30, 2025

Problem: The mass-conservation constraint, requiring computing $\alpha_t v_t$ makes the problem non-convex.

nge

Problem: The mass-conservation constraint, requiring computing $\alpha_t v_t$ makes the problem <u>non-convex</u>.

Solution: We can reparameterize the problem using Mean-Field Games:

1. MFGs are ∞ -agent games with each agent in spatial domain trying to minimize individual cost. We assume a density function at time *t*.

$$\min_{\alpha_t, v_t} T(\alpha_0, \alpha_1) + \int_0^1 \int_{\mathbb{R}^d} L(\mathbf{x}, v_t(\mathbf{x}), \alpha_t(\mathbf{x})) \, dx \, dt \tag{7}$$

Problem: The mass-conservation constraint, requiring computing $\alpha_t v_t$ makes the problem <u>non-convex</u>.

Solution: We can reparameterize the problem using Mean-Field Games:

1. MFGs are ∞ -agent games with each agent in spatial domain trying to minimize individual cost. We assume a density function at time *t*.

$$\min_{\alpha_t, v_t} T(\alpha_0, \alpha_1) + \int_0^1 \int_{\mathbb{R}^d} L(\mathbf{x}, v_t(\mathbf{x}), \alpha_t(\mathbf{x})) \, dx \, dt \tag{7}$$

2. We define agent trajectories $F:\mathbb{R}^d\times [0,1]\to \mathbb{R}^d$ satisfying:

$$\begin{cases} \partial_t F(\boldsymbol{x},t) = v_t(F(\boldsymbol{x},t)) & \forall \boldsymbol{x} \in \mathbb{R}^d, \ t \in [0,1] \\ F(\boldsymbol{x},0) = \boldsymbol{x} \end{cases}$$
(8)

Problem: The mass-conservation constraint, requiring computing $\alpha_t v_t$ makes the problem <u>non-convex</u>.

Solution: We can reparameterize the problem using Mean-Field Games:

1. MFGs are ∞ -agent games with each agent in spatial domain trying to minimize individual cost. We assume a density function at time *t*.

$$\min_{\alpha_t, v_t} T(\alpha_0, \alpha_1) + \int_0^1 \int_{\mathbb{R}^d} L(\mathbf{x}, v_t(\mathbf{x}), \alpha_t(\mathbf{x})) \, dx \, dt \tag{7}$$

2. We define agent trajectories $F:\mathbb{R}^d\times [0,1]\to \mathbb{R}^d$ satisfying:

$$\begin{cases} \partial_t F(\mathbf{x}, t) = v_t(F(\mathbf{x}, t)) & \forall \mathbf{x} \in \mathbb{R}^d, \ t \in [0, 1] \\ F(\mathbf{x}, 0) = \mathbf{x} \end{cases}$$
(8)

3. Which under the reparameterization is *convex*:

$$\min_{\alpha_t, v_t} \int_0^1 \int_{\mathbb{R}^d} \|v_t(x)\|^2 \ d\alpha_t(x) \ dt = \min_F \int_0^1 \int_{\mathbb{R}^d} \|\partial_t F(\boldsymbol{x}, t)\|^2 \alpha_0(\boldsymbol{x}) \ dx \ dt$$
(9)

Problem: The mass-conservation constraint, requiring computing $\alpha_t v_t$ makes the problem <u>non-convex</u>.

Solution: We can reparameterize the problem using Mean-Field Games:

1. MFGs are ∞ -agent games with each agent in spatial domain trying to minimize individual cost. We assume a density function at time *t*.

$$\min_{\alpha_t, v_t} \mathcal{T}(\alpha_0, \alpha_1) + \int_0^1 \int_{\mathbb{R}^d} \mathcal{L}(\mathbf{x}, v_t(\mathbf{x}), \alpha_t(\mathbf{x})) \, dx \, dt \tag{7}$$

2. We define agent trajectories $F:\mathbb{R}^d\times [0,1]\to \mathbb{R}^d$ satisfying:

$$\begin{cases} \partial_t F(\mathbf{x}, t) = v_t(F(\mathbf{x}, t)) & \forall \mathbf{x} \in \mathbb{R}^d, \ t \in [0, 1] \\ F(\mathbf{x}, 0) = \mathbf{x} \end{cases}$$
(8)

3. Which under the reparameterization is *convex*:

$$\min_{\alpha_t, v_t} \int_0^1 \int_{\mathbb{R}^d} \|v_t(x)\|^2 \ d\alpha_t(x) \ dt = \min_F \int_0^1 \int_{\mathbb{R}^d} \|\partial_t F(\boldsymbol{x}, t)\|^2 \alpha_0(\boldsymbol{x}) \ dx \ dt$$
(9)

Next, we need to find a way to learn F. Let's talk normalizing flows.

ECE ML Reading Group

Dynamic Optimal Transport

2 Normalizing Flows

Transport-Regularized Normalizing Flows

Image: Image:

臣

Generative Modelling Framework

Image Credit: https://lilianweng.github.io/posts/2018-10-13-flow-models/

Image: A matched and A matc

Since mass vectors are sampled from Σ , α_t are probabibility measures.

Image: Image:

Э

Since mass vectors are sampled from Σ , α_t are probabibility measures.

Setting $\mathbf{y} = T(\mathbf{x})$, we can apply the change of variables formula:

$$\alpha_{1}(\boldsymbol{y}) = \alpha_{0}(T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})) |\det \nabla_{\boldsymbol{y}} T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})| = \frac{\alpha_{0}(T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y}))}{|\det \nabla_{\boldsymbol{x}} T_{\sharp} \circ T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})|} \quad (10)$$

To compute the PDF of α_1 .

Since mass vectors are sampled from Σ , α_t are probabibility measures.

Setting $\mathbf{y} = T(\mathbf{x})$, we can apply the change of variables formula:

$$\alpha_{1}(\boldsymbol{y}) = \alpha_{0}(T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})) |\det \nabla_{\boldsymbol{y}} T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})| = \frac{\alpha_{0}(T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y}))}{|\det \nabla_{\boldsymbol{x}} T_{\sharp} \circ T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})|} \quad (10)$$

To compute the PDF of α_1 .

We still need a known α_0 , so we use the multivariate normal $\mathcal{N}(0, I)$:

$$\alpha_0(\mathbf{x}) = \left(\frac{1}{2\pi}\right)^{d/2} \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right) \tag{11}$$

Since mass vectors are sampled from Σ , α_t are *probabibility measures*.

Setting $\mathbf{y} = T(\mathbf{x})$, we can apply the change of variables formula:

$$\alpha_{1}(\boldsymbol{y}) = \alpha_{0}(T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})) |\det \nabla_{\boldsymbol{y}} T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})| = \frac{\alpha_{0}(T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y}))}{|\det \nabla_{\boldsymbol{x}} T_{\sharp} \circ T_{\sharp}^{-1}\alpha_{1}(\boldsymbol{y})|} \quad (10)$$

To compute the PDF of α_1 .

We still need a known α_0 , so we use the multivariate normal $\mathcal{N}(0, I)$:

$$\alpha_0(\mathbf{x}) = \left(\frac{1}{2\pi}\right)^{d/2} \exp\left(-\frac{1}{2}\|\mathbf{x}\|^2\right) \tag{11}$$

Our goal is to learn the *inverse direction* – a function from target measure α_1 to source measure α_0 . Next, we can discuss approches to model T.

We need three major properties from our choice of model:

1. Must be invertible, so that we can learn the normalizing direction.

We need three major properties from our choice of model:

- 1. Must be invertible, so that we can learn the normalizing direction.
- 2. Must be expressive enough to model the target distribution.

We need three major properties from our choice of model:

- 1. Must be invertible, so that we can learn the normalizing direction.
- 2. Must be expressive enough to model the target distribution.
- 3. Must be efficient to compute.

We need three major properties from our choice of model:

- 1. Must be invertible, so that we can learn the normalizing direction.
- 2. Must be expressive enough to model the target distribution.
- 3. Must be efficient to compute.

The class of functions that satisfies these properties are diffeomorphisms.

We need three major properties from our choice of model:

- 1. Must be invertible, so that we can learn the normalizing direction.
- 2. Must be expressive enough to model the target distribution.
- 3. Must be efficient to compute.

The class of functions that satisfies these properties are diffeomorphisms.

Diffeomorphisms are arbitrarily composable. Let $y_{\ell} := f_{\ell}$ be diffemorphisms with inverses g_{ℓ} for $\ell \in \{1, \ldots, L\}$:

$$F := f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1 \tag{12}$$

$$G := g_1 \circ g_2 \circ \cdots \circ g_{L-1} \circ g_L \tag{13}$$

Then we have $F = G^{-1}$.

We need three major properties from our choice of model:

- 1. Must be invertible, so that we can learn the normalizing direction.
- 2. Must be expressive enough to model the target distribution.
- 3. Must be efficient to compute.

The class of functions that satisfies these properties are diffeomorphisms.

Diffeomorphisms are arbitrarily composable. Let $y_{\ell} := f_{\ell}$ be diffemorphisms with inverses g_{ℓ} for $\ell \in \{1, \dots, L\}$:

$$F := f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1 \tag{12}$$

$$G := g_1 \circ g_2 \circ \cdots \circ g_{L-1} \circ g_L \tag{13}$$

Then we have $F = G^{-1}$. Additionally, we can also compose determinants:

$$\det \nabla_{\mathbf{y}} F = \prod_{\ell=1}^{L} \det \nabla_{\mathbf{y}_{\ell}} f_{\ell}$$
(14)

We need three major properties from our choice of model:

- 1. Must be invertible, so that we can learn the normalizing direction.
- 2. Must be expressive enough to model the target distribution.
- 3. Must be efficient to compute.

The class of functions that satisfies these properties are diffeomorphisms.

Diffeomorphisms are arbitrarily composable. Let $y_{\ell} := f_{\ell}$ be diffemorphisms with inverses g_{ℓ} for $\ell \in \{1, \dots, L\}$:

$$F := f_L \circ f_{L-1} \circ \cdots \circ f_2 \circ f_1 \tag{12}$$

$$G := g_1 \circ g_2 \circ \cdots \circ g_{L-1} \circ g_L \tag{13}$$

Then we have $F = G^{-1}$. Additionally, we can also compose determinants:

$$\det \nabla_{\mathbf{y}} F = \prod_{\ell=1}^{L} \det \nabla_{\mathbf{y}_{\ell}} f_{\ell}$$
(14)

This is huge for satisfying property 2.

Optimization by Maximum Likelihood

Learning Normalizing Flows allows us to directly maximize log-likelihood: $\min_{\theta} D_{\mathrm{KL}}(\alpha_1 || T_{\sharp} \alpha_0) = -\mathbb{E}_{\mathbf{x} \sim \alpha_1}[\log \alpha_0(G(\mathbf{x})) + \log |\det \nabla_{\mathbf{y}} G|] + C \quad (15)$

With some constant C, which for purpose of optimization we can ignore.

Optimization by Maximum Likelihood

Learning Normalizing Flows allows us to directly maximize log-likelihood: $\min_{\theta} D_{\mathrm{KL}}(\alpha_1 || T_{\sharp} \alpha_0) = -\mathbb{E}_{\mathbf{x} \sim \alpha_1}[\log \alpha_0(G(\mathbf{x})) + \log |\det \nabla_{\mathbf{y}} G|] + C \quad (15)$ With some constant *C*, which for purpose of optimization we can ignore.

Caveat: Models trained using $D_{\rm KL}$ are volatile to initialization and interpolate poorly:

Optimization by Maximum Likelihood

Learning Normalizing Flows allows us to directly maximize log-likelihood: $\min_{\theta} D_{\mathrm{KL}}(\alpha_1 || T_{\sharp} \alpha_0) = -\mathbb{E}_{\mathbf{x} \sim \alpha_1}[\log \alpha_0(G(\mathbf{x})) + \log |\det \nabla_{\mathbf{y}} G|] + C \quad (15)$ With some constant *C*, which for purpose of optimization we can ignore.

Caveat: Models trained using $D_{\rm KL}$ are volatile to initialization and interpolate poorly:

Which we can fix by regularization to transport cost:

ECE ML Reading Group

Normalizing Flows

April 30, 2025

Coupling Flows

One clever diffeomorphism is a **coupling flow**:

< 47 ▶

E

990

Coupling Flows

One clever diffeomorphism is a **coupling flow**:

With random permutation Π , we define forward flow ($\alpha_0 \rightarrow \alpha_1$) as:

$$\mathbf{x}' := \Pi(\mathbf{x}), \qquad \mathbf{w}, \mathbf{b} := h_{\Theta}(\mathbf{x}'_{D/2+1:D})$$
 (16)

$$f_k^{(\Theta_k)}(\boldsymbol{x}) := \operatorname{Concat}([\boldsymbol{x}_{1:D/2}' \odot \exp(\boldsymbol{w}) + \boldsymbol{b}, \boldsymbol{x}_{D/2+1:D}'])$$
(17)

Coupling Flows

One clever diffeomorphism is a **coupling flow**:

With random permutation Π , we define forward flow ($\alpha_0 \rightarrow \alpha_1$) as:

$$\mathbf{x}' := \Pi(\mathbf{x}), \qquad \mathbf{w}, \mathbf{b} := h_{\Theta}(\mathbf{x}'_{D/2+1:D})$$
 (16)

$$f_k^{(\Theta_k)}(\boldsymbol{x}) := \mathsf{Concat}([\boldsymbol{x}'_{1:D/2} \odot \exp(\boldsymbol{w}) + \boldsymbol{b}, \boldsymbol{x}'_{D/2+1:D}]) \tag{17}$$

Subsequently inverse flow $(\alpha_1 \rightarrow \alpha_0)$ is defined as follows:

$$\mathbf{w}, \mathbf{b} := h_{\Theta}(\mathbf{y}_{D/2+1:D}) \tag{18}$$

$$f_{k}^{(\Theta_{k})^{-1}}(\boldsymbol{y}) := \Pi^{-1} \left(\operatorname{Concat}([(\boldsymbol{y}_{1:D/2} - \boldsymbol{b}) \oslash \exp(\boldsymbol{w}), \boldsymbol{y}_{D/2+1:D}]) \right) \tag{19}$$

Best part, the Jacobian of $f_k^{(\Theta_k)^{-1}}$ has the the following block form:

$$\nabla f_k^{(\Theta_k)^{-1}}(\boldsymbol{y}) = \begin{bmatrix} I_{D/2 \times D/2} & \boldsymbol{0}_{D/2 \times D/2} \\ \frac{\partial f_{k,D/2+1:D}^{(\Theta_k)^{-1}}}{\partial \boldsymbol{y}_{1:D/2}} & \text{diag}\left(\exp\left(-\boldsymbol{w}\right)\right) \end{bmatrix}$$

Э

Best part, the Jacobian of $f_k^{(\Theta_k)^{-1}}$ has the the following block form:

$$\nabla f_{k}^{(\Theta_{k})^{-1}}(\boldsymbol{y}) = \begin{bmatrix} I_{D/2 \times D/2} & \boldsymbol{0}_{D/2 \times D/2} \\ \frac{\partial f_{k,D/2+1:D}^{(\Theta_{k})^{-1}}}{\frac{\partial y_{1:D/2}}{\partial \boldsymbol{y}_{1:D/2}}} & \text{diag}\left(\exp\left(-\boldsymbol{w}\right)\right) \end{bmatrix}$$
(20)

Which enables us to compute its determinant in linear time:

$$\det \nabla f_k^{(\Theta_k)^{-1}}(\boldsymbol{y}) = \exp\left(\sum -\mathbf{w}_k\right)$$
(21)

Best part, the Jacobian of $f_k^{(\Theta_k)^{-1}}$ has the the following block form:

$$\nabla f_k^{(\Theta_k)^{-1}}(\boldsymbol{y}) = \begin{bmatrix} I_{D/2 \times D/2} & \boldsymbol{0}_{D/2 \times D/2} \\ \frac{\partial f_{k,D/2+1:D}^{(\Theta_k)^{-1}}}{\partial \boldsymbol{y}_{1:D/2}} & \text{diag}\left(\exp\left(-\boldsymbol{w}\right)\right) \end{bmatrix}$$
(20)

Which enables us to compute its determinant in linear time:

$$\det \nabla f_k^{(\Theta_k)^{-1}}(\boldsymbol{y}) = \exp\left(\sum -\mathbf{w}_k\right)$$
(21)

Which we can further use to compute composed log det ∇F^{-1} :

$$\log \det \nabla F^{-1}(\mathbf{y}) = \sum_{\ell=0}^{L-1} \sum_{i=1}^{D/2} -\mathbf{w}_i^{(\ell)}$$
(22)

Best part, the Jacobian of $f_k^{(\Theta_k)^{-1}}$ has the the following block form:

$$\nabla f_k^{(\Theta_k)^{-1}}(\boldsymbol{y}) = \begin{bmatrix} I_{D/2 \times D/2} & \boldsymbol{0}_{D/2 \times D/2} \\ \frac{\partial f_{k,D/2+1:D}^{(\Theta_k)^{-1}}}{\partial \boldsymbol{y}_{1:D/2}} & \text{diag}\left(\exp\left(-\boldsymbol{w}\right)\right) \end{bmatrix}$$
(20)

Which enables us to compute its determinant in linear time:

$$\det \nabla f_k^{(\Theta_k)^{-1}}(\boldsymbol{y}) = \exp\left(\sum -\mathbf{w}_k\right)$$
(21)

Which we can further use to compute composed log det ∇F^{-1} :

$$\log \det \nabla F^{-1}(\mathbf{y}) = \sum_{\ell=0}^{L-1} \sum_{i=1}^{D/2} -\mathbf{w}_i^{(\ell)}$$
(22)

Implication: h_{Θ} can be arbitrarily complex!

ECE ML Reading Group

1 Dynamic Optimal Transport

Normalizing Flows

3 Transport-Regularized Normalizing Flows

臣

< ∃ >

Image: Image:

Setting the Terminal Condition

The final thing left to discuss is the terminal condition. We need F s.t:

$$F(\mathbf{x},1) = \mathbf{y} \sim \alpha_1 \quad \forall x \in \mathbb{R}^d$$
(23)

Setting the Terminal Condition

The final thing left to discuss is the terminal condition. We need F s.t:

$$F(\mathbf{x},1) = \mathbf{y} \sim \alpha_1 \quad \forall x \in \mathbb{R}^d$$
(23)

Instead of solving a constrained problem, we soft-constraint using $D_{\rm KL}$:

$$\min_{F} \int_{0}^{1} \int_{\mathbb{R}^{d}} \|\partial_{t}F(\boldsymbol{x},t)\|^{2} \alpha_{0}(\boldsymbol{x}) \, d\boldsymbol{x} \, dt + \lambda D_{\mathrm{KL}}(\alpha_{1}||F_{\sharp}\alpha_{0}) \qquad (24)$$

 $D_{\rm KL}$ is conventional cost; we just add transport cost, hence new formulation is called **transport-regularized normalizing flows**.

Setting the Terminal Condition

The final thing left to discuss is the terminal condition. We need F s.t:

$$F(\mathbf{x},1) = \mathbf{y} \sim \alpha_1 \quad \forall x \in \mathbb{R}^d$$
(23)

Instead of solving a constrained problem, we soft-constraint using $D_{\rm KL}$:

$$\min_{F} \int_{0}^{1} \int_{\mathbb{R}^{d}} \|\partial_{t}F(\boldsymbol{x},t)\|^{2} \alpha_{0}(\boldsymbol{x}) \, dx \, dt + \lambda D_{\mathrm{KL}}(\alpha_{1}||F_{\sharp}\alpha_{0})$$
(24)

 $D_{\rm KL}$ is conventional cost; we just add transport cost, hence new formulation is called **transport-regularized normalizing flows**.

Discretizing across a composition of L flows, we have:

$$\min_{F} L \cdot \mathbb{E}_{\boldsymbol{x} \sim \alpha_{0}} \left[\sum_{\ell=0}^{L-1} \|F_{\ell+1}(\boldsymbol{x}) - F_{\ell}(\boldsymbol{x})\|_{2}^{2} \right] + \lambda D_{\mathrm{KL}}(\alpha_{1} ||F_{\sharp}\alpha_{0})$$
(25)

Using this, we can train transport-regularized normalizing flows.

If you can view this screen, I am making a mistake.

Have an awesome rest of your day!

Slides: https://jinen.setpal.net/slides/nf.pdf

< 17 ▶

Э

nge