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What is Interpretability?

Interpretability within Machine
Learning is the degree to which we
can understand the cause of a
decision, and use it to consistently
predict the model’s prediction.

This is easy for shallow learning. For
deep learning however, it is a lot
harder.

Today, we will interpret deep neural
networks (transformer).
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What will we Achieve Today?

Specifically, we’ll analyze the 1-layer
attention model.

For mathematical simplicity, this
model ignores biases, layer-norm and
dense layers.

Why is this useful?
If we are able to completely
understand a toy model, we can:

- understand why attention works.

- observe recurring patterns in
complex models.
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What is Mechanistic Interpretability?

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a
focus on reverse engineering neural networks.

It seeks to understand functions that individual neurons play in the
inference of a neural network.

This can subsequently be used to offer high-level explanations for
decisions, as well as guarantees during inference.
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Self-Attention Synopsis

n-gram models used the following incorrect assumption:

p(xt |{xi}t−1
i=1 ; θ) ̸≈ p(xt |xt−1; θ) (1)

Why ̸≈? It’s because context is important!

But, so is efficiency. Self-Attention solves this by effectively creating a
trainable database.

We query it to subset the important tokens. For {xi}ti=1,

αi = σsoftmax

(
qik

T
i√
dk

)
(2)

h(x) =
t∑

i=1

αivi

(3)

Where qi , ki , vi are each independent parameter matrices.
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Reframing using Tensorization (1/3)

We can represent attention using tensor products:

h(x) = (I ⊗WO) · (A⊗ I ) · (I ⊗WV ) · x (4)

= (A⊗WOWV ) · x

(5)

The disjointed nature of A, WOWV tells us a lot!

a. A and WOWV are fundamentally independent entities.

b. A describes which token information moves through, WOWV

describes which residual subspace to read from and write to.

MHA(x0) = x0 +
∑
h∈H

(Ah ⊗W h
OW

h
V ) · x0 (6)

Our final transformer has the following equation:

T (t0) = (I ⊗WU) ·MHA((I ⊗WE ) · t0) (7)

Why is this important?
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Reframing using Tensorization (2/3)

We begin by simplifying to just T :

T = (I ⊗WU) ·MHA(I ⊗WE ) (8)

= (I ⊗WU) · (I ⊗WE +
∑
h∈H

(Ah ⊗W h
OW

h
V ) · I ⊗WE )

(9)

T = WUWE +
∑
h∈H

(Ah ⊗WUW
h
OW

h
VWE )

(10)

Here’s the breakdown:

a. WUWE approximate bigram statistics.

b. Ah dictates where the attention heads attend.

c. WUW
h
OW

h
VWE describes the behavior of logits if we attend to a

given token.

Observation: The equation is linear, if we fix attention patterns.
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Reframing using Tensorization (3/3)

Finally, let’s also unpack attention in tensor-product form.

First, we can display key-value matrix operations:

qi = (I ⊗WQWE ) · t0 (11)

ki = (I ⊗WKWE ) · t0 (12)

And then apply them to unnormalized3 attention:

A = σsoftmax

(
[qik

T
j ]i ,j

)
(13)

= σsoftmax

(
tT0 · (I ⊗W T

E W T
Q ) · (I ⊗WKWE ) · t0

)
(14)

= σsoftmax

(
tT0 ·W T

E W T
Q WKWE · t0

)
(15)

3to ease computation.
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Unravelling QK, OV Circuits (1/3)

Here’s the two tensor equations combined:

T = WUWE +
∑
h∈H

(Ah ⊗WUW
h
OW

h
VWE ) (10)

A = σsoftmax

(
tT0 ·W T

E W T
Q WKWE · t0

)
(15)

Q: Is there anything interesting about these two? (similarities, differences)

Here’s my observations:

a. It’s a much simpler recomposition of feedforward inference.

b. A is the only non-linear operation.

c. A learns independently from the rest of the tensor equation.

However, we’re still missing one.
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Unravelling QK, OV Circuits (2/3)

Importantly, both equations have (|voc|, |voc|) size matrices:

T = WUWE +
∑
h∈H

(Ah ⊗WUW
h
OW

h
VWE ) (10)

A = σsoftmax

(
tT0 ·W T

E W T
Q WKWE · t0

)
(15)

These chained tensor operations are our circuits, and lie at the heart of
the transformer architecture.

a. The Output-Value(OV) Circuit WUW
h
OW

h
VWE : determines how

attending to a token affects logits.

b. The Query-Key(QK) Circuit W T
E W T

Q WKWE : determines which
tokens to attend to.
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Unravelling QK, OV Circuits (3/3)
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Interpretation as Skip-Trigrams

We can think through inference procedure with single source token.4

From there, we look at the largest QK and OV entries.

4for simplicity.
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Eigenvalue Analysis

Most of the prominent behaviours include copying. We can identify this
using eigenvalue analysis.

Recall from the definition of eigenvectors,

Wv = λv ;λ ∈ C (16)

This is useful when we map a vector space upon itself.

Importantly, note that positive eigenvalues mean they are copying ‘on
average’, and are not definitive.
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Outline

1 Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity
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Problem Setup

Q: Is anyone familiar with the the curse of dimensionality?

A: For NNs, basically latent space ∝ |layers|c .

This makes them tough to analyze at scale. In addition, models are
incredibly efficient at information compression.

This is superposition.

When we perform an indvidual
analysis of neurons, it
fires for unrelated concepts.

This is polysemanticity.
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Updated Architecture

Previously, we used an attention-only model, since the MLP was too hard
to analyze mathematically.

Let’s instead analyze the following architecture empirically :
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Training Setup

Transformer Sparse Autoencoder

Layers
1 Attention Block
1 MLP Block

1 ReLU
1 Linear

MLP Size 512 512× f ∈ {1, . . . , 256}5
Dataset The Pile (100B tokens) Activations (8B samples)

Loss Autoregressive Log-Likelihood
L2 Reconstruction

L1 on hidden-layer activation

Objective: polysemantic activations
Tr→ monosemantic features.

The sparse, overcomplete autoencoder is trained against this objective.

1. Sparse because we constrain activations (L1 penalty).

2. Overcomplete because the hidden layer exceeds the input dimension.

5f = 8 for our analysis
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Sparse Dictionary Learning

Given X := {x j}Kj=1; xi ∈ Rd , we wish to find D ∈ Rd×n,R ∈ Rn s.t:

||X − DR||2F ≈ 0 (17)

We can motivate our objective transformation by linear factorization:

x j ≈ b +
∑
i

fi (x
j)di (18)

fi = σReLU(WE (x − bD) + bE ) (19)

where di is the ‘feature direction’ represented as columns of the WD .

Some interesting implementation notes:

a. Training data ∝ n(interpretable features).

b. Tying bD before the encoder and after the decoder
improves performance.

c. Dead neurons are periodically resampled to improve feature
representations.

Machine Learning @ Purdue Mechanistic Interpretability February {1, 8}, 2024 21 / 27



Sparse Dictionary Learning

Given X := {x j}Kj=1; xi ∈ Rd , we wish to find D ∈ Rd×n,R ∈ Rn s.t:

||X − DR||2F ≈ 0 (17)

We can motivate our objective transformation by linear factorization:

x j ≈ b +
∑
i

fi (x
j)di (18)

fi = σReLU(WE (x − bD) + bE ) (19)

where di is the ‘feature direction’ represented as columns of the WD .

Some interesting implementation notes:

a. Training data ∝ n(interpretable features).

b. Tying bD before the encoder and after the decoder
improves performance.

c. Dead neurons are periodically resampled to improve feature
representations.

Machine Learning @ Purdue Mechanistic Interpretability February {1, 8}, 2024 21 / 27



Sparse Dictionary Learning

Given X := {x j}Kj=1; xi ∈ Rd , we wish to find D ∈ Rd×n,R ∈ Rn s.t:

||X − DR||2F ≈ 0 (17)

We can motivate our objective transformation by linear factorization:

x j ≈ b +
∑
i

fi (x
j)di (18)

fi = σReLU(WE (x − bD) + bE ) (19)

where di is the ‘feature direction’ represented as columns of the WD .

Some interesting implementation notes:

a. Training data ∝ n(interpretable features).

b. Tying bD before the encoder and after the decoder
improves performance.

c. Dead neurons are periodically resampled to improve feature
representations.

Machine Learning @ Purdue Mechanistic Interpretability February {1, 8}, 2024 21 / 27



Sparse Dictionary Learning

Given X := {x j}Kj=1; xi ∈ Rd , we wish to find D ∈ Rd×n,R ∈ Rn s.t:

||X − DR||2F ≈ 0 (17)

We can motivate our objective transformation by linear factorization:

x j ≈ b +
∑
i

fi (x
j)di (18)

fi = σReLU(WE (x − bD) + bE ) (19)

where di is the ‘feature direction’ represented as columns of the WD .

Some interesting implementation notes:

a. Training data ∝ n(interpretable features).

b. Tying bD before the encoder and after the decoder
improves performance.

c. Dead neurons are periodically resampled to improve feature
representations.

Machine Learning @ Purdue Mechanistic Interpretability February {1, 8}, 2024 21 / 27



Sparse Dictionary Learning

Given X := {x j}Kj=1; xi ∈ Rd , we wish to find D ∈ Rd×n,R ∈ Rn s.t:

||X − DR||2F ≈ 0 (17)

We can motivate our objective transformation by linear factorization:

x j ≈ b +
∑
i

fi (x
j)di (18)

fi = σReLU(WE (x − bD) + bE ) (19)

where di is the ‘feature direction’ represented as columns of the WD .

Some interesting implementation notes:

a. Training data ∝ n(interpretable features).

b. Tying bD before the encoder and after the decoder
improves performance.

c. Dead neurons are periodically resampled to improve feature
representations.

Machine Learning @ Purdue Mechanistic Interpretability February {1, 8}, 2024 21 / 27



Evaluating Interpretability

Reliable evaluations on interpretability were scored based on a rubric:

Features were found to be interpretable when score > 8.
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Analyzing Arabic Features

Let’s analyze feature A/1/3450, that fires on Arabic Script.

This is effectively invisible when viewed through the polysemantic model!

We can evaluate each token using the log-likelihood ratio:

LL(t) = log (P(t|Arabic)/P(t)) (20)

Despite representing
0.13% of training
data, arabic script
makes up 81% of
active tokens:
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Pinned Feature Sampling

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors,
and then sample from the model.

We observe that interpreted features are actively used by the model.
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Finite State Automaton

A unique feature of features is their role as finite state automaton.

Unlike circuits, these work by daisy chaining features that increase the
probability of another feature firing in a loop-like fashion.

These present partial explanations of memorizations within transformers:
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Reimplementation

If you can view this screen, I am making a mistake.
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Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/mechinterp.pdf
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