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Introduction

Convolutional Neural Networks are fantastic. They efficiently extract a
vast range of relevant contextual features and are resistant to pixel shift.

However, they have a critical flaw.
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Neural Networks Aren’t Rotationally Robust.

Q1: Do you think that a CNN trained on a distribution of the left image
should classify the right image as the same class for each of these pairs?

A1: Definitely!

Q2: In practice, does this actually happen?
A2: Nope – all these images were misclassified.

Q3: How can we fix this?
A3: Data Augmentation (boring), G-Invariant Transformations (fun)!
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Understanding Groups

Definition: A group is a set G , with an operator ⊙ that acts on
∀g1, g2 ∈ G .

(G ,⊙) has the following properties:

a. It’s closed under combination. g1 ⊙ g2 = g3 ∈ G

b. It contains an identity. ∃I ∈ G s.t. g1 ⊙ I = g1 ∀g1 ∈ G

c. It contains an inverse. ∃g−1
1 ∈ G s.t. g1 ⊙ g−1

1 = g−1
1 ⊙ g1 = I

d. ⊙ is associative. g1 ⊙ (g2 ⊙ g3) = (g1 ⊙ g2)⊙ g3

e. (Optional) ⊙ is commutative (abelian). g1 ⊙ g2 = g2 ⊙ g1

f. (Optional) Can be finite (|G | < ∞) or infinite (|G | = ∞).

Q: Why do we care?
A: We leverage axioms a-d to derive a transformation invariant
representation of our input. Invariance holds iff axioms a-d also hold.
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The General Linear Group

A linear transformation is defined as:

T (v) = Av where v ∈ Rn, A ∈ Rm×n, T : Rn → Rm (1)

If A ∈ G is a linear transformation, G is a linear group.

The general linear group is the set of all invertible transformations:

GLn : (Mn×n(R),⊙) (2)

Next, we define general linear groups over some affine transformations.
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GL Tranformation Groups over Images

Let our input x ∈ R3×n×n be our input image. Consider vec(x) ∈ R3n2 .

Grot ≡ {T 0◦ ,T 90◦ ,T 180◦ ,T 270◦} (3)

Gflip ≡ {T v ,T h,T 180◦ ,T 0◦} (4)

Both groups are defined over G : R3n2 → R3n2
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Obtaining an Invariant Transform

Defining the transformations as a group gives us guarantees we can
exploit to ensure invariance to those transformations.

Formally, we want to make our input image invariant to rotation:

∀T , T̄ (Tx) = T̄ x where T ∈ Grot (5)

We can integrate this into the definition of a nueron:

σ(wT x + b)
def
= σ(wTTx + b) (6)

Lemma: We can find T̄ using the Reynold’s Operator.

T̄ =
1

|G |
∑
g∈G

g (7)

Now, we have T̄ s.t. T̄ ◦ T = T !
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Invariant Subspace of T̄

Now, we need to find M ⊆ Rd s.t. ∀wT ∈ M, wT T̄ ∈ M.

One example of an invariant subspace is the left-1 eigenspace of T̄ :

Left-1-Eig(T̄ ) = {w ∈ Rd | wT T̄ = wT} (8)

Extracting those eigenvectors, we get V = {vi}ki=1 s.t. ∀vi ∈ V :

vT
i T̄ = λivi (9)

By definition of eigenvectors.

Since T̄ is a projection operator, λi = 1 ∀i :

vT
i T̄ = vi (10)
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Putting it All Together

We can use our invariant bases V = {vi}ki=1 to create an invariant layer.

wT =
k∑

i=1

wivi (11)

Finally, we construct our group invariant layer:

hinv = σ(wT x + b) = σ(wTTx + b) ∀T ∈ Grot (12)

From here, the rest of the MLP follows the standard definition.

Machine Learning @ Purdue G-Transformation Invaraiance September 26, 2024 13 / 16



Putting it All Together

We can use our invariant bases V = {vi}ki=1 to create an invariant layer.

wT =
k∑

i=1

wivi (11)

Finally, we construct our group invariant layer:

hinv = σ(wT x + b) = σ(wTTx + b) ∀T ∈ Grot (12)

From here, the rest of the MLP follows the standard definition.

Machine Learning @ Purdue G-Transformation Invaraiance September 26, 2024 13 / 16



Putting it All Together

We can use our invariant bases V = {vi}ki=1 to create an invariant layer.

wT =
k∑

i=1

wivi (11)

Finally, we construct our group invariant layer:

hinv = σ(wT x + b) = σ(wTTx + b) ∀T ∈ Grot (12)

From here, the rest of the MLP follows the standard definition.

Machine Learning @ Purdue G-Transformation Invaraiance September 26, 2024 13 / 16



Equivariance for CNNs

Our previous approach leveraged an isomorphism, which requires
Rn → Rn. This fails to hold for CNNs.

Instead, a more relevant property we can investigate is equivariance:

ρ1(g)Wx = W ρ2(g)x ; g ∈ G , ρ1 : G → Rn×n, ρ2 : G → Rk×k (13)

Since this holds over our entire input x , we can re-arrange it as:

ρ1(g)W ρ2(g)
−1 = W (14)

This can be re-arranged to demonstrate an equivalency with invariance:

ρ2(g)× ρ1(g
−1)T︸ ︷︷ ︸

T̄

vec(W )︸ ︷︷ ︸
x

= vec(W )︸ ︷︷ ︸
x

(15)

From there, the previous invariance proof follows.
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= vec(W )︸ ︷︷ ︸
x

(15)

From there, the previous invariance proof follows.
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Let’s Demonstrate!

Here’s what the final architecture looks like:
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Thank you!

Have an awesome rest of your day!

Paper: https://arxiv.org/abs/2104.10105/

Slides: https://cs.purdue.edu/homes/jsetpal/slides/gti.pdf

Notebook: https://cs.purdue.edu/homes/jsetpal/nb/gti.ipynb
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