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Introduction

Convolutional Neural Networks are fantastic. They efficiently extract a
vast range of relevant contextual information and are resilient to pixel shift.

However, they have a critical flaw.
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Why aren’t CNNs rotationally robust?

Q1: Do you think that a CNN trained on a distribution of the left image
should correctly classify the right image?

A1: Definitely!
Q2: Does that actually happen?
A2: Nope – all these images were misclassified :(
Q3: How can we fix this?
A3: Data Augmentation (boring), G-invariance (fun)!

Today, we’ll explore a rotation invariant solution for an MLP. CNN’s need
G-equivariance, which we’ll discuss some other time.
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Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is

abstract. g1 ⊙ g2 = g3

b. It is closed under operation. g1, g2, g3 ∈ G
c. Inverses always exist. gn ⊙ g−1

n = I
d. There exists an identity. gn ⊙ I = gn

e. The operation is associative. g1 ⊙ (g2 ⊙ g3) = (g1 ⊙ g2) ⊙ g3

Optionally, it is commutative. g1 ⊙ g2 = g2 ⊙ g1. If it is commutative, the
group is called abelian.

Q: Why is it important?
A: These are the axioms on which we define our solution to the rotation
problem. Only if these axioms hold true can our solution exist.
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The General Linear Group

It’s a special group G consisting of n × n matrices with matrix product as
the defined operation. Formally,

GLn : (Mn×n(R), ·)

Our training dataset contains inputs x ∈ R3n2 .
Therefore GL3n2 : (M3n2(R), ·) represents images within our dataset.

Now, we can define transformations that can be performed on this group –
the only restriction being the axioms of a group.
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Setting Up Transformations
To set up the transformations we can run, we define another group, called
a Transformation Group. We assume the same prior input x ∈ R3n2

Grot ≡
{

T θ
}

θ∈{0◦,90◦,180◦,270◦}
(1)

Gflip ≡
{

T v , T h, T 180◦
, T 0◦}

(2)

Both groups are defined G : R3n2 → R3n2
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The G-Invariant Neuron

Our objective is to learn the optimal weight on a layer such that

σ(wT x + b) = σ(wT TGx + b)

where TG is the transformation group.

This latent subspace is transformation invariant!

If the above equation holds, that means that our layer is G-invariant.
Q: How can we go about finding this?
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Reynolds Operator
A given transformation is G-invariant if,

T1(T2x) = T1x ; T2 ∈ G , x ∈ R3n2

So the objective is to find T2, formally called the Reynolds Operator.

Incidentally, we can find this using mean of the group:

T2 = 1
|G |

G∑
g∈G

g

Extracting the left eigenvectors of T2, we obtain vn. By definition of the
eigenvectors:

viT2 = λivi

viT2 = vi

T2 is a projection operator
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Defining the Output Latent Space

We can now define our weights such that,

wT =
k∑

i=1
αivT

i

where T stands for transpose, & αi is arbitrary
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Bringing it all Together

In order to set up our complete neural network, all we have to do is
prepend the G-invariant layer we just built to our standard model.

This will ensure that we build a feature space that’s invariant to rotation!
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Executing Code

Let’s classify!!

If you can view this screen, I am making a mistake.
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Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/g-invariance.pdf
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