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Welcome to Reading Group!

Ask many, many questions! Please don’t hold questions until the end.

Discussion is awesome, restating the obvious is good practice and boosts
clarity for everyone.

I probably get some things wrong, and definitely can’t answer every
question. Idea is to work through it together.
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PPO

We start with the standard clipped surrogate objective introduced in PPO:

JPPO(θ) := E[q ∼ P(Q), o ∼ πθold (O|q)]

1

|o|

|o|∑
i=1

min

(
πθold (oi |q, o<i )

πθ(oi |q, o<i )
Ai , clip

(
πθold (oi |q, o<i )

πθ(oi |q, o<i )
, 1± ε

)
Ai

)
(1)

One issue with this is Ai , which is computed using the Generalized
Advantage Estimator2 –

1. Estimates long-range trajectory rewards.

2. However, requires a neural reward model which is expensive to train
and can be unstable.

2Schulman et. al [ICLR 2016]
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RLHF Synopsis (1/2)

We’ll review the RLHF pipeline per Zeiger et al. It has 3-primary phases:

1. Supervised Fine-Tuning (SFT): A pre-trained LLM (πPT ) is
fine-tuned on high-quality, domain-specific datasets to obtain πSFT .

2. Reward Modelling: Next, we obtain a reward model rϕ(x , y) that
models user preferences. We start by sampling from πSFT :

D := {(xj , y1, y2)}N,K
i=1,j=1 ∼ πSFT (y |x), {xi}Ki=1 (2)

yw ≻ yl |x ∼ r∗(x , y) ∀ (y1, y2) ∈ D (3)

where r∗(x , y) is the unknown optimal policy. Per Bradley-Terry:

p∗(y1 ≻ y2|x) = σsoftmax[y1](r
∗(x , y)); y ∈ {y1, y2} (4)

is the preference distribution optimized over negative log-likelihood on
a parameterized model rϕ(x , y). Some notes:

a. Rewards are normalized over x to motivate lower variance.
b. rϕ is πSFT with the final linear layer returning the scalar reward.
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RLHF Synopsis (2/2)

3. RL Fine-Tuning: Finally, we use rϕ to fine-tune πSFT , with the
following objectives:

a. rϕ should be maximized. Assumption: r∗ ≈ rϕ.

b. We do not want mode-collapse (random tokens that maximize
reward). Solution: KL Divergence.

Mathematically, RLHF posits the following optimization problem:

max
πθ

Ex∼D,y∼πθ(y |x)(rϕ(x , y))− βDKL[πθ(y |x) || πSFT (y |x)] (5)

This is equivalent to the reward function:

r(x , y) = rϕ(x , y)− β(log πθ(y |x))− log(πSFT (y |x)) (6)

Which is maximized using Proximal Policy Optimization.
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GRPO (1/2)

For each question q, GRPO samples outputs {o1, . . . , oG} with the
training objective being to maximize (1):

JGRPO(θ) := E[q ∼ P(Q), {oi}Gi=1 ∼ πθold (O|q)]

1

G

G∑
i=1

(
min

(
πθold (oi |q)
πθ(oi |q)

Ai , clip

(
πθold (oi |q)
πθ(oi |q)

, 1± ε

)
Ai

)
+ βDKL(πθ||πref)

)
(7)

DKL(πθ||πref) =
πref(oi |q)
πθ(oi |q)

− log
πref(oi |q)
πθ(oi |q)

− 1 (8)

Ai =
ri − r̄

σstd(r)
; r ∈ {r1, . . . , rG} (9)
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GRPO (2/2)

We have defined everything except the reward function.

Unfortunately the
paper also is vague about this; it specifies a rule-based system:

1. Accuracy rewards: For objective tasks, correctness ∝ reward .

2. Format rewards: For following the required format, it gets a reward.

𝑞𝑞

𝑜𝑜!

𝑜𝑜"

𝑜𝑜#

𝑟𝑟!

𝑟𝑟"

𝑟𝑟#

𝐴𝐴!

𝐴𝐴"

𝐴𝐴#

𝑞𝑞 𝑜𝑜 GAE 𝐴𝐴

𝑟𝑟

𝑣𝑣

Reward 
Model

Policy 
Model

Value 
Model

… … …

Policy 
Model

Reference 
Model

Reward 
Model

PPO

GRPO

Trained
Models

Frozen
ModelsReference 

Model

⊕
𝐾𝐾𝐾𝐾

𝐾𝐾𝐾𝐾

Group 
Computation
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Approach Overview

The training process can largely can be broken down into three stages:

1. RL on a base model – gets us DeepSeek-R1-Zero.

2. RL+SFT on a checkpoint – gets us DeepSeek-R1.

3. Distillation – gets us DeepSeek-R1-Distill-<model-name>.

We’ll discuss each of these in detail next.
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Less is More Philosophy

A core finding from Less is More for Aligment (LIMA)3 – a small set of
synethetic examples encourages better generalization.

Less (controlled) randomness, unbiased initialization in unstable regimes
can avoid local optima and training failures.

This is strong exemplified in the approaches used for R1’s training:

1. No need for neural rewards, don’t want reward hacking.

2. No need for SFT, let GRPO figure it out from scratch.

3. No need for complex prompting, don’t bias RL towards approaches.

This, combined with carefully selected data are key to the incredible
benchmark performance.

3https://arxiv.org/abs/2305.11206
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Less (controlled) randomness, unbiased initialization in unstable regimes
can avoid local optima and training failures.
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RL on a Base Model

Start by taking a base model (no SFT, but models language well).

Train with RL until convergence on task. Interesting consequence:

Thinking more, and thinking anthropomorhically as emergent properties.
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Challenges with Direct RL

There are a couple of negative consequences:

1. Poor Readibility: No rewards motivating readibility.

2. Language Mixing: No rewards motivating consistency of language –
although this one should have been fairly easy to implement?

Aside

They did figure this out for R1, but it degraded performance slightly.

Solution? Cold Start. Use SFT briefly, to encourage approaching
problems consistently.
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Cold Start

So, what is cold start?
Idea: Collect small amount of long CoT data; to fine-tune the base model
as the initial actor.

From here, we expect the local optima to find a solution that leverages
readibility but prevents language mixing.

How to actually collect the data? They used a couple of strategies:

1. Few shot prompting using a long CoT as examples.

2. Prompting for detailed explanations, with reflection & verification.

3. Manually refining DeepSeek-R1-Zero outputs to remove language
mixing, fixing readibility and general response refinment.
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Rejection Sampling & Supervised Fine-Tuning

When RL converges, use the training checkpoint to sample data from
domains beyond just reasoning: creative writing, role-playing, general
purpose tasks.

Beyond Rule-Based Rewards Modelling:

1. Curate reasoning prompts and rejection sampling from the checkpoint.

2. Now, incorporate generative reward model – DeepSeek-V3.

3. Sample multiple responses and retain correct ones.

Overall, we get from this ≈ 600K reasoning related training samples.

Next, add ≈ 200K tokens for factual QA, self-cognition, translation, etc.

Add CoT where relevant, using DeepSeek-V3.

SFT DeepSeek-V3-Base for 2 epochs over ≈ 800K sample dataset. Profit.
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Secondary RL Stage

This part is exactly RLHF.

Helps with: improving helpfulness and harmlessness.

Quiet Part Out Loud

Probably was used to filter out Tiananmen Square Massacre information,
whatever additional censorship they desire.
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Distillation

Further, they fine-tuned open source models like Qwen & LLaMa over
DeepSeek-R1’s responses.

Here, used SFT and not RL even though they think RL would peform
better.

Opinion

I disagree, they could’ve used RL to fine-tune DeepSeek-V3-Base with
RL-checkpointed data but chose SFT.
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What Didn’t Work & Why

Process Reward Model: Prone to reward hacking, requires fine-grained
setup, evaluating intermediate steps are challenging for general reasoning.

Monte-Carlo Tree Search: Enable explore the solution space
systematically; but search space is ill-designed and scaling is restrictive.

Setting restrictions leads to spurious local optima, and also requires a
pre-trained value model which is expensive.

Aside

Approaches do exist that combine these two and exhibit strong
performance in specific specialized domains.ab

ahttps://arxiv.org/abs/2406.03816
bhttps://arxiv.org/abs/2501.07301
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Drawbacks

The authors note the following limitations of their approach:

1. Their reasoning focused approach triggers some catastrophic
forgetting.

2. It reasons in English / Chinese even when query language is neither.

3. It doesn’t work well with few-shot prompting.

4. It doesn’t work well for SWE tasks.

Machine Learning @ Purdue DeepSeek R1 January 30, 2025 20 / 24



Drawbacks

The authors note the following limitations of their approach:

1. Their reasoning focused approach triggers some catastrophic
forgetting.

2. It reasons in English / Chinese even when query language is neither.

3. It doesn’t work well with few-shot prompting.

4. It doesn’t work well for SWE tasks.

Machine Learning @ Purdue DeepSeek R1 January 30, 2025 20 / 24



Drawbacks

The authors note the following limitations of their approach:

1. Their reasoning focused approach triggers some catastrophic
forgetting.

2. It reasons in English / Chinese even when query language is neither.

3. It doesn’t work well with few-shot prompting.

4. It doesn’t work well for SWE tasks.

Machine Learning @ Purdue DeepSeek R1 January 30, 2025 20 / 24



Drawbacks

The authors note the following limitations of their approach:

1. Their reasoning focused approach triggers some catastrophic
forgetting.

2. It reasons in English / Chinese even when query language is neither.

3. It doesn’t work well with few-shot prompting.

4. It doesn’t work well for SWE tasks.

Machine Learning @ Purdue DeepSeek R1 January 30, 2025 20 / 24



Outline

1 RL Review

2 Training Details

3 Performance Evals
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Reasoning
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Other Stuff

[Refer to paper directly]
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Thank you!

Have an awesome rest of your day!

Slides: https://jinen.setpal.net/slides/dsr1.pdf
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