
Direct Preference Optimization:
Your Language Model Is Secretly a Reward Model1

J. Setpal

March 28, 2024

MACHINE LEARNING
@ PURDUE

1Rafailov, Sharma, Mitchell, et. al
Machine Learning @ Purdue DPO March 28, 2024 1 / 17



Outline

1 Background, Intuition, Motivations

2 Deriving & Understanding DPO

3 Results

Machine Learning @ Purdue DPO March 28, 2024 2 / 17



Outline

1 Background, Intuition, Motivations

2 Deriving & Understanding DPO

3 Results

Machine Learning @ Purdue DPO March 28, 2024 3 / 17



Task Formulation

Consider the sample conversation:
Human: What is your favourite pet?
LLM: I like

Q: What’s the correct answer?

Dog? Cat? Human? Something else?
A: Depends2 on our preferences.

Preference Modelling involves embedding subjective biases within LLMs.

Following are two popular objective models DPO solves for:

a. Bradley-Terry: Binary result ranking – y1 ≻ y2

b. Plackett-Luce: Multi-result ranking – y1 ≻ y2 ≻ y3 ≻ . . . ≻ yn

2But still, definitely not human.
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RLHF Synopsis (1/2)

We’ll review the RLHF pipeline per Zeiger et al. It has 3-primary phases:

1. Supervised Fine-Tuning (SFT): A pre-trained LLM (πPT ) is
fine-tuned on high-quality, domain-specific datasets to obtain πSFT .

2. Reward Modelling: Next, we obtain a reward model rϕ(x , y) that
models user preferences. We start by sampling from πSFT :

D := {(xj , y1, y2)}N,K
i=1,j=1 ∼ πSFT (y |x), {xi}Ki=1 (1)

yw ≻ yl |x ∼ r∗(x , y) ∀ (y1, y2) ∈ D (2)

where r∗(x , y) is the unknown optimal policy. Per Bradley-Terry:

p∗(y1 ≻ y2|x) = σsoftmax[y1](r
∗(x , y)); y ∈ {y1, y2} (3)

is the preference distribution optimized over negative log-likelihood on
a parameterized model rϕ(x , y). Some notes:

a. Rewards are normalized over x to motivate lower variance.
b. rϕ is πSFT with the final linear layer returning the scalar reward.
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RLHF Synopsis (2/2)

3. RL Fine-Tuning: Finally, we use rϕ to fine-tune πSFT , with the
following objectives:

a. rϕ should be maximized. Assumption: r∗ ≈ rϕ.

b. We do not want mode-collapse (random tokens that maximize
reward). Solution: KL Divergence.

Mathematically, RLHF posits the following optimization problem:

max
πθ

Ex∼D,y∼πθ(y |x)(rϕ(x , y))− βDKL[πθ(y |x) || πSFT (y |x)] (4)

This is equivalent to the reward function:

r(x , y) = rϕ(x , y)− β(log πθ(y |x))− log(πSFT (y |x)) (5)

Which is maximized using Proximal Policy Optimization.
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Why DPO?

The primary issue with using RLHF is language generation is discrete.

As a consequence, the objective is non-differentiable.

Actor-Critic Algorithms are unstable because of the normalization term:

max
πθ

Eπθ(y |x)

[
rϕ(x , y)−β log

∑
y

πSFT (y |x)exp
(
rϕ(x , y)

β

)
− β log

πθ(y |x)
πSFT (y |x)

]
(6)

High variance ∝ instability, and the normalization term is hard to
optimize. This can be learned or sampled by human-completion baselines.

DPO creates rϕ that enables optimal policy extraction in closed form.

The optimization policy represents both: the language model and implicit
reward, that is optimized with log-loss.3

3“Your Language Model Is Secretly a Reward Model”
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Objective

Objective: Loss over reward
Tr→ Loss over policy.

We must first identify (πSFT , r)
Tr→ π∗; π∗ is a valid probability distribution.

We use this to construct LDPO which maximizes NLL over DKL(πθ, π
∗).

If πSFT is not available, we obtain it by training πPT for the MLE:

πSFT
def
= max

πPT

E{x ,yw}∼D(log(πPT (yw |x))) (7)

which minimizes distribution shift.
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Finding (πSFT , r)
Tr→ π∗ (1/2)

We begin by restructuring the maximization objective from RLHF:

max
πθ

Ex∼D,y∼πθ(y |x)(rϕ(x , y))− βDKL[πθ(y |x) || πSFT (y |x)] (4)

= min
πθ

Ex∼DEy∼πθ(y |x)

log πθ(y |x)
1

Z(x)πSFT (y |x) exp
(

1
β r(x , y)

) − logZ (x)


(8)

Where Z (x) is a partition function (scalar that induces proportionality).

In English this time, here’s what’s happening:

1. The maximization objective is reward minus KL divergence.

2. max
Tr→ min objective is divergence minus reward.

3. We can combine reward and the SFT model by plugging in a partition
function.
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Finding (πSFT , r)
Tr→ π∗ (2/2)

From our new objective, we extract on optimal policy π∗:

min
πθ

Ex∼DEy∼πθ(y |x)

log πθ(y |x)
1

Z(x)πSFT (y |x) exp
(

1
β r(x , y)

) − logZ (x)

 (8)

π∗(y |x) = 1

Z (x)
πSFT (y |x) exp

(
1

β
r(x , y)

)
(9)

From here, we log both sides and solve for r(x , y):

r(x , y) = β

[
log

π∗(y |x)
πSFT (y |x)

+ log(Z (x))

]
(10)

This is still unsolvable, because it’s hard to approximate Z (x). However,
we can fit this to the Bradley-Terry Model.
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β r(x , y)

) − logZ (x)

 (8)

π∗(y |x) = 1

Z (x)
πSFT (y |x) exp

(
1

β
r(x , y)

)
(9)

From here, we log both sides and solve for r(x , y):

r(x , y) = β

[
log

π∗(y |x)
πSFT (y |x)

+ log(Z (x))

]
(10)

This is still unsolvable, because it’s hard to approximate Z (x). However,
we can fit this to the Bradley-Terry Model.
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Obtaining LDPO

Recall from RLHF definition, we have eq. (3):

p∗(y1 ≻ y2|x) = σsoftmax[y1](r
∗(x , y)); y ∈ {y1, y2} (3)

dZ(x)
dy = 0, so it does not play a role in optimization.

We get:

p∗(y1 ≻ y2|x) = σsoftmax

(
β log

π∗(y1|x)
πSFT (y1|x)

− β log
π∗(y2|x)

πSFT (y2|x)

)
(11)

which is loss over a single sample.

Finally, we can maximize expectation over p∗(y1 ≻ y2|x) with NLL:

LDPO = −E(x ,yw ,yl )∼D[log(p
∗(y1 ≻ y2|x))] (12)

over which we find our MLE.
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Benchmark Scores

DPO’s authors evaluated their approach on the following tasks:

1. Controlled Sentiment Generation

2. Text Summarization

3. Single-Turn Dialogue

They used GPT-4 to perform ‘auto-evaluations’ on the data, by asking
GPT-4 to select a winner output through blind testing.
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Scalability

DPO was shown to work well at scale, outperforming PPO without tuning
β.

It was also compared with human evaluators for robustness:

DPO SFT PPO-1

N respondents 272 122 199

GPT-4 (S) win % 47 27 13
GPT-4 (C) win % 54 32 12
Human win % 58 43 17

GPT-4 (S)-H agree 70 77 86
GPT-4 (C)-H agree 67 79 85
H-H agree 65 - 87
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Generalizability & Future Work

To evaluate generalizability, DPO is also compared against PPO on
out-of-distribution inference on CNN/DailyMail articles.

Win rate vs. ground truth

Alg. Temp 0 Temp 0.25

DPO 0.36 0.31
PPO 0.26 0.23

Here, DPO outperforms PPO despite not using additional unlabelled
prompts, that PPO requires.

The authors note that more extensive study on the generalizability of DPO
is necessary.

Finally, DPO is also only evaluated on 6B parameter models, and an
exploration of it’s performance at scale is also necessitated.
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Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/dpo.pdf
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