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What is Matrix Multiplication?
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SIGAI — Reading Group AlphaTensor November 15, 2022 4/14



What is Matrix Multiplication?

R y

Problem: It's too complex! O(n%).
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What is Matrix Multiplication?

1 2 2 2 4 4
[3 4] ' [1 11 - llo 10] (1)
Problem: It's too complex! O(n%).

Optimization ldeas:
- Human Search
- Continuous Optimization

- Combinatorial Search
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What is Matrix Multiplication?

1 2 2 2 4 4
[3 4] ' [1 11 - llo 10] (1)
Problem: It's too complex! O(n%).

Optimization ldeas:
- Human Search
- Continuous Optimization
- Combinatorial Search

Problem: Suboptimal!
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What are Tensors?

Matrices, but generalized.
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So, let's automate the Search Process!

There's a couple of considerations:

- Representing tensors as an operation.
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Let's Restructure the Problem!

a b c
my=(a,+a,)(by+b,)
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This can then be represented using:

R
=3 v v gwl

r=1
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Attention is All It Needs!

Leveraging the Current tensor and the history, embedding, policy and
value head.
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Synthetic Demonstration

Decomposing a 3D tensor is NP-hard (it's the challenge).
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Synthetic Demonstration

Decomposing a 3D tensor is NP-hard (it's the challenge).
However, the reverse is triviall

Randomly selected tensor pairs are used to compose a 3D-tensor. This
generates synthetic data on which the AlphaTensor agent trains.
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Change of Basis

Change the basis is similar to a linear operation.
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Change of Basis

Change the basis is similar to a linear operation.

It's the same transofmation, but the algorithm interprets it as a new input.

Easy way to augment existing data!
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Putting it Together
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Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/alphatensor.pdf
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